The Potential Antiviral Effects of Selenium Nanoparticles and Coated Surfaces

Modern epidemics quickly spread across borders and continents with devastating effects on both human health and the world economy. This issue is made worse by the various ways that infections are spread, including through aerosol, droplets, and fomites. The antibacterial qualities of various surface...

Full description

Saved in:
Bibliographic Details
Published inAntibiotics (Basel) Vol. 11; no. 12; p. 1683
Main Authors Kopel, Jonathan, Fralick, Joe, Reid, Ted W.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 23.11.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Modern epidemics quickly spread across borders and continents with devastating effects on both human health and the world economy. This issue is made worse by the various ways that infections are spread, including through aerosol, droplets, and fomites. The antibacterial qualities of various surface materials and coatings have been the subject of much research. However, the antiviral activity of metal coatings can be heavily influenced by imbalances in metal distribution and the presence of other metal impurities. As such, there is interest in developing novel surface coatings that can reduce the transmission of active viral particles in healthcare facilities. In recent years, the non-metals, such as selenium and nanoparticles, have acquired greater interest from the medical and scientific community for their antiviral surface activity. In this review, we will discuss the cellular and physiological functions of selenium in mammalian cells and against viral infections. We then discuss the mechanism behind selenium coated surfaces and their efficacy against bacterial infections. Lastly, we examine the antiviral activity of selenium, and the potential antiviral activity of selenium nanoparticles and coatings.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2079-6382
2079-6382
DOI:10.3390/antibiotics11121683