Variation with slope aspect in effects of temperature on nitrogen mineralization and nitrification in mineral soil of mixed hardwood forests

This study examined the effects of temperature on soil nitrogen (N) dynamics and variation with slope aspect (northeast (NE) versus southwest (SW)) at two forested sites in West Virginia — Beech Fork Lake (BFL) and Fernow Experimental Forest (FEF) — with similar soil and overstory characteristic...

Full description

Saved in:
Bibliographic Details
Published inCanadian journal of forest research Vol. 45; no. 7; pp. 958 - 962
Main Authors Gilliam, Frank S, Julia E. Galloway, Jacob S. Sarmiento
Format Journal Article
LanguageEnglish
Published Ottawa NRC Research Press 01.07.2015
Canadian Science Publishing NRC Research Press
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study examined the effects of temperature on soil nitrogen (N) dynamics and variation with slope aspect (northeast (NE) versus southwest (SW)) at two forested sites in West Virginia — Beech Fork Lake (BFL) and Fernow Experimental Forest (FEF) — with similar soil and overstory characteristics but with different latitudes and elevations. Previous work on mineral soil from both sites had shown sharp differences in microbial communities between SW slopes and NE slopes. Mineral soil was sampled from three and eight plots per aspect at FEF and BFL, respectively. Inorganic N was extracted from samples, which were then divided into polyethylene bags for 7-day incubations at 4 °C, 15 °C, 25 °C, and 35 °C. Following incubation, soils were extracted and analyzed for inorganic N. Net N mineralization varied significantly between aspects and temperatures but did not vary between sites; net nitrification varied significantly between aspects, temperatures, and sites. Net N mineralization increased with incubation temperature at all aspects and sites. Net nitrification rates increased with incubation temperature for BFL soils; however, maximum net nitrification rates occurred at 20–25 °C for FEF soils. Net nitrification was essentially undetectable for SW soils at either site. Results underline the complexities of the N cycle in temperate forest ecosystems, representing challenges in predicting alterations in soil N dynamics under conditions of global climate change.
Bibliography:http://dx.doi.org/10.1139/cjfr-2015-0087
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1208-6037
0045-5067
1208-6037
DOI:10.1139/cjfr-2015-0087