Impact of biochar application on nitrogen nutrition of rice, greenhouse-gas emissions and soil organic carbon dynamics in two paddy soils of China

Aims Two field microcosm experiments and ¹⁵N labeling techniques were used to investigate the effects of biochar addition on rice N nutrition and GHG emissions in an Inceptisol and an Ultisol. Methods Biochar N bioavailability and effect of biochar on fertilizer nitrogen-use efficiency (NUE) were st...

Full description

Saved in:
Bibliographic Details
Published inPlant and soil Vol. 370; no. 1/2; pp. 527 - 540
Main Authors Xie, Zubin, Xu, Yanping, Liu, Gang, Liu, Qi, Zhu, Jianguo, Tu, Cong, Amonette, James E., Cadisch, Georg, Yong, Jean W. H., Hu, Shuijin
Format Journal Article
LanguageEnglish
Published Dordrecht Springer 01.09.2013
Springer Netherlands
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Aims Two field microcosm experiments and ¹⁵N labeling techniques were used to investigate the effects of biochar addition on rice N nutrition and GHG emissions in an Inceptisol and an Ultisol. Methods Biochar N bioavailability and effect of biochar on fertilizer nitrogen-use efficiency (NUE) were studied by ¹⁵N-enriched wheat biochar (7.8803 atom% ¹⁵N) and fertilizer urea (5.0026 atom% ¹⁵N) (Experiment I). Corn biochar and corn stalks were applied at 12 Mgha⁻¹ to study their effects on GHG emissions (Experiment II). Results Biochar had no significant impact on rice production and less than 2 % of the biochar N was available to plants in the first season. Biochar addition increased soil C and N contents and decreased urea NUE. Seasonal cumulative CH₄ emissions with biochar were similar to the controls, but significantly lower than the local practice of straw amendment. N₂O emissions with biochar were similar to the control in the acidic Ultisol, but significantly higher in the slightly alkaline Inceptisol. Carbon-balance calculations found no major losses of biochar-C. Conclusion Low bio-availability of biochar N did not make a significantly impact on rice production or N nutrition during the first year. Replacement of straw amendments with biochar could decrease CH₄ emissions and increase SOC stocks.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0032-079X
1573-5036
DOI:10.1007/s11104-013-1636-x