Pht2;1 encodes a low-affinity phosphate transporter from Arabidopsis

An Arabidopsis genomic sequence was recently shown to share similarity with bacterial and eukaryotic phosphate (Pi) transporters. We have cloned the corresponding cDNA, which we named Pht2;1, and subsequently performed gene expression studies and functional analysis of the protein product. The cDNA...

Full description

Saved in:
Bibliographic Details
Published inThe Plant cell Vol. 11; no. 11; pp. 2153 - 2166
Main Authors Daram, P, Brunner, S, Rausch, C, Steiner, C, Amrhein, N, Bucher, M
Format Journal Article
LanguageEnglish
Published United States American Society of Plant Physiologists 01.11.1999
American Society of Plant Biologists
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:An Arabidopsis genomic sequence was recently shown to share similarity with bacterial and eukaryotic phosphate (Pi) transporters. We have cloned the corresponding cDNA, which we named Pht2;1, and subsequently performed gene expression studies and functional analysis of the protein product. The cDNA encodes a 61-kD protein with a putative topology of 12 transmembrane (TM) domains interrupted by a large hydrophilic loop between TM8 and TM9. Two boxes of eight and nine amino acids, located in the N- and C-terminal domains, respectively, are highly conserved among species across all kingdoms (eubacteria, archea, fungi, plants, and animals). The Pht2;1 gene is predominantly expressed in green tissue, the amount of transcript staying constant in leaves irrespective of the Pi status of the shoot; in roots, however, there is a marginal increase in mRNA amounts in response to Pi deprivation. Although the protein is highly similar to eukaryotic sodium-dependent Pi transporters, functional analysis of the Pht2;1 protein in mutant yeast cells indicates that it is a proton/Pi symporter dependent on the electrochemical gradient across the plasma membrane. Its fairly high apparent K(m) for Pi (0.4 mM) and high mRNA content in the shoot, especially in leaves, suggest a role for shoot organs in Pi loading. Pht2;1 thus differs from members of the recently described plant Pi transporter family in primary structure, affinity for Pi, and presumed function.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1040-4651
1532-298X
DOI:10.1105/tpc.11.11.2153