A simple and rapid fluorescence in situ hybridization microwave protocol for reliable dicentric chromosome analysis
Fluorescence in situhybridization (FISH) is an extremely effective and sensitive approach to analyzing chromosome aberrations. Until recently, this procedure has taken multiple days to complete. The introduction of telomeric and centromeric peptide nucleic acid (PNA) probes has reduced the procedure...
Saved in:
Published in | Journal of radiation research Vol. 54; no. 2; pp. 344 - 348 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.03.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Fluorescence in situhybridization (FISH) is an extremely effective and sensitive approach to analyzing chromosome aberrations. Until recently, this procedure has taken multiple days to complete. The introduction of telomeric and centromeric peptide nucleic acid (PNA) probes has reduced the procedure's duration to several hours, but the protocols still call for a high temperature (80-90°C) step followed by 1-3 h of hybridization. The newest method to speed up the FISH protocol is the use of a microwave to shorten the heating element to less than a minute; however this protocol still calls for a 1-h hybridization period. We have utilized PNA centromere/telomere probes in conjunction with a microwave oven to show telomere and centromere staining in as little as 30 s. We have optimized the hybridization conditions to increase the sensitivity and effectiveness of the new protocol and can effectively stain chromosomes in 2 min and 30 s of incubation. We have found that our new approach to FISH produces extremely clear and distinct signals. Radiation-induced dicentric formation in mouse and human fibroblast cells was analyzed by two individual scorers and the observed dicentrics matched very well. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0449-3060 1349-9157 |
DOI: | 10.1093/jrr/rrs090 |