Contribution and Interactions of Hydroxycinnamic Acids Found in Bran and Wholegrain Sorghum (Sorghum bicolor L. Moench): Effects on the Antioxidant Capacity and Inhibition of Human Erythrocyte Hemolysis

An imbalance between free radicals and antioxidants is known as oxidative stress, and it promotes cellular aging and the development of chronic noncommunicable diseases. The bioactive compounds present in food play an important role in preventing oxidative stress. The aim of this study was to determ...

Full description

Saved in:
Bibliographic Details
Published inOxidative medicine and cellular longevity Vol. 2017; no. 2017; pp. 1 - 8
Main Authors Robles Sánchez, Maribel, Rouzaud-Sández, Ofelia, Cinco-Moroyoqui, Francisco J., Loarca-Piña, Guadalupe, González Aguilar, Gustavo A., Salazar Lopez, Norma Julieta, Domínguez-Avila, J. Abraham
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 01.01.2017
Hindawi
John Wiley & Sons, Inc
Hindawi Limited
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:An imbalance between free radicals and antioxidants is known as oxidative stress, and it promotes cellular aging and the development of chronic noncommunicable diseases. The bioactive compounds present in food play an important role in preventing oxidative stress. The aim of this study was to determine the contributions and interactions of the hydroxycinnamic acids found in the bran and whole grain of sorghum and to evaluate their effects on the antioxidant capacity and inhibition of the hemolysis of human erythrocytes. Results showed that the caffeic acid, p-coumaric acid, and ferulic acid found in sorghum contributed to the scavenging of DPPH and ABTS radicals in various proportions. Ferulic acid, which was present in bound form in the bran and wholegrain sorghum, significantly inhibited the AAPH radical-induced oxidation of the erythrocyte membranes by 78.0 and 4.3%, respectively. Combinations of two, three, or four hydroxycinnamic acids may interact in an antagonistic or synergistic manner, thereby altering each other’s bioactivities. The various interactions between the different sorghum bioactives can have a significant impact on their potential bioactivities. These results can be useful in the design of functional foods that aim to deliver bioactives to mitigate cellular aging or noncommunicable diseases.
Bibliography:Academic Editor: Manuela Curcio
ISSN:1942-0900
1942-0994
DOI:10.1155/2017/8219023