Tracking, tuning, and terminating microbial physiology using synthetic riboregulators

The development of biomolecular devices that interface with biological systems to reveal new insights and produce novel functions is one of the defining goals of synthetic biology. Our lab previously described a synthetic, riboregulator system that affords for modular, tunable, and tight control of...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 107; no. 36; pp. 15898 - 15903
Main Authors Callura, Jarred M., Dwyer, Daniel J., Isaacs, Farren J., Cantor, Charles R., Collins, James J.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 07.09.2010
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The development of biomolecular devices that interface with biological systems to reveal new insights and produce novel functions is one of the defining goals of synthetic biology. Our lab previously described a synthetic, riboregulator system that affords for modular, tunable, and tight control of gene expression in vivo. Here we highlight several experimental advantages unique to this RNA-based system, including physiologically relevant protein production, component modularity, leakage minimization, rapid response time, tunable gene expression, and independent regulation of multiple genes. We demonstrate this utility in four sets of in vivo experiments with various microbial systems. Specifically, we show that the synthetic riboregulator is well suited for GFP fusion protein tracking in wild-type cells, tight regulation of toxic protein expression, and sensitive perturbation of stress response networks. We also show that the system can be used for logic-based computing of multiple, orthogonal inputs, resulting in the development of a programmable kill switch for bacteria. This work establishes a broad, easy-to-use synthetic biology platform for microbiology experiments and biotechnology applications.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
Author contributions: J.M.C., D.J.D., F.J.I., C.R.C., and J.J.C. designed research; J.M.C. and D.J.D. performed research; J.M.C. and D.J.D. analyzed data; and J.M.C., D.J.D., F.J.I., C.R.C., and J.J.C. wrote the paper.
Contributed by Charles R. Cantor, July 13, 2010 (sent for review June 1, 2010)
1J.M.C. and D.J.D. contributed equally to this work.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.1009747107