Evolution of a System to Monitor Infant Neuromotor Development in the Home: Lessons from COVID-19

In the nine months leading up to COVID-19, our biomedical engineering research group was in the very early stages of development and in-home testing of HUGS, the Hand Use and Grasp Sensor (HUGS) system. HUGS was conceived as a tool to allay parents' anxiety by empowering them to monitor their i...

Full description

Saved in:
Bibliographic Details
Published inHealthcare (Basel) Vol. 11; no. 6; p. 784
Main Authors Schladen, Manon Maitland, Kuo, Hsin-Hung, Tran, Tan, Ofonedu, Achuna, Hoang, Hanh, Jett, Robert, Gu, Megan, Liu, Kimberly, Mohammed, Kai'lyn, Mohammed, Yas'lyn, Lum, Peter S, Koumpouros, Yiannis
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.03.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In the nine months leading up to COVID-19, our biomedical engineering research group was in the very early stages of development and in-home testing of HUGS, the Hand Use and Grasp Sensor (HUGS) system. HUGS was conceived as a tool to allay parents' anxiety by empowering them to monitor their infants' neuromotor development at home. System focus was on the evolving patterns of hand grasp and general upper extremity movement, over time, in the naturalistic environment of the home, through analysis of data captured from force-sensor-embedded toys and 3D video as the baby played. By the end of March, 2020, as the COVID-19 pandemic accelerated and global lockdown ensued, home visits were no longer possible and HUGS system testing ground to an abrupt halt. In the spring of 2021, still under lockdown, we were able to resume recruitment and in-home testing with HUGS-2, a system whose key requirement was that it be contactless. Participating families managed the set up and use of HUGS-2, supported by a detailed library of video materials and virtual interaction with the HUGS team for training and troubleshooting over Zoom. Like the positive/negative poles of experience reported by new parents under the isolation mandated to combat the pandemic, HUGS research was both impeded and accelerated by having to rely solely on distance interactions to support parents, troubleshoot equipment, and securely transmit data. The objective of this current report is to chronicle the evolution of HUGS. We describe a system whose design and development straddle the pre- and post-pandemic worlds of family-centered health technology design. We identify and classify the clinical approaches to infant screening that predominated in the pre-COVID-19 milieu and describe how these procedural frameworks relate to the family-centered conceptualization of HUGS. We describe how working exclusively through the proxy of parents revealed the family's priorities and goals for child interaction and surfaced HUGS design shortcomings that were not evident in researcher-managed, in-home testing prior to the pandemic.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2227-9032
2227-9032
DOI:10.3390/healthcare11060784