Magnetic Graphene Field-Effect Transistor Biosensor for Single-Strand DNA Detection
Herein, a magnetic graphene field-effect transistor biosensor was prepared through the transfer of a chemical vapor deposition graphene film onto a glass substrate to produce a sensing film and conductive channel. By fixing 1-pyrenebutanoic acid succinimidyl ester onto graphene film as an anchor, a...
Saved in:
Published in | Nanoscale research letters Vol. 14; no. 1; pp. 248 - 8 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
24.07.2019
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Herein, a magnetic graphene field-effect transistor biosensor was prepared through the transfer of a chemical vapor deposition graphene film onto a glass substrate to produce a sensing film and conductive channel. By fixing 1-pyrenebutanoic acid succinimidyl ester onto graphene film as an anchor, a probe aptamer was immobilized on the graphene film in order to capture magnetically labeled complementary single-stranded DNA. Our experiments showed that, within a periodic magnetic field, the biosensor impedance exhibited a periodic oscillation, the amplitude of which was correlated to the complementary DNA concentration. Based on this principle, the magnetic graphene field-effect transistor was utilized to detect single-stranded DNA with detection limition of 1 pM. The results were rationalized using a model wherein the magnetic force causes the DNA strand to bend, thereby resulting in magnetic nanobeads/DNA modulation of the double conductive layer of graphene transistors. Furthermore, since a periodic magnetic field could be introduced to produce a periodic impedance changes of MGFETs, sampling integration could be used to improve the signal-to-noise ratio efficiently by increasing the number of periods of the external magnetic field. Therefore, a novel biosensor for DNA detection with high sensitivity has been presented in this work. Based on the detection principle, this system may also be a potential tool for detecting other bio-molecules, cells, etc. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1931-7573 1556-276X |
DOI: | 10.1186/s11671-019-3048-1 |