Isotopic constraints on plant nitrogen acquisition strategies during ecosystem retrogression

Plant root associations with microbes such as mycorrhizal fungi or N-fixing bacteria enable ecosystems to tap pools of nitrogen (N) that might otherwise be inaccessible, including atmospheric N or N in large soil organic molecules. Such microbially assisted N-foraging strategies may be particularly...

Full description

Saved in:
Bibliographic Details
Published inOecologia Vol. 192; no. 3; pp. 603 - 614
Main Authors Dynarski, Katherine A., Houlton, Benjamin Z.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Science + Business Media 01.03.2020
Springer Berlin Heidelberg
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Plant root associations with microbes such as mycorrhizal fungi or N-fixing bacteria enable ecosystems to tap pools of nitrogen (N) that might otherwise be inaccessible, including atmospheric N or N in large soil organic molecules. Such microbially assisted N-foraging strategies may be particularly important in late-successional retrogressive ecosystems where productivity is low and soil nutrients are scarce. Here, we use natural N-stable isotopic composition to constrain pathways of N supplies to different plant functional groups across a well-studied natural soil fertility gradient that includes a highly retrogressive stage. We demonstrate that ectomycorrhizal fungi, ericoid mycorrhizal fungi, and N-fixing bacteria support forest N supplies at all stages of ecosystem succession, from relatively young, N-rich/phosphorus (P)-rich sites, to ancient sites (ca. 500 ky) where both N supplies and P supplies are exceedingly low. Microbially mediated N sources are most important in older ecosystems with very low soil nutrient availability, accounting for 75–96% of foliar N at the oldest, least fertile sites. These isotopically ground findings point to the key role of plant–microbe associations in shaping ecosystem processes and functioning, particularly in retrogressive-phase forest ecosystems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0029-8549
1432-1939
DOI:10.1007/s00442-020-04606-y