A Torque Control Strategy for a Robotic Dolphin Platform Based on Angle of Attack Feedback

Biological fish can always sense the state of water flow and regulate the angle of attack in time, so as to maintain the highest movement efficiency during periodic flapping. The biological adjustment of the caudal fin's angle of attack (AoA) depends on the contraction/relaxation of the tail mu...

Full description

Saved in:
Bibliographic Details
Published inBiomimetics (Basel, Switzerland) Vol. 8; no. 3; p. 291
Main Authors Wang, Tianzhu, Yu, Junzhi, Chen, Di, Meng, Yan
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.07.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Biological fish can always sense the state of water flow and regulate the angle of attack in time, so as to maintain the highest movement efficiency during periodic flapping. The biological adjustment of the caudal fin's angle of attack (AoA) depends on the contraction/relaxation of the tail muscles, accompanying the variation in tail stiffness. During an interaction with external fluid, it helps to maintain the optimal angle of attack during movement, to improve the propulsion performance. Inspired by this, this paper proposes a tail joint motion control scheme based on AoA feedback for the high-speed swimming of bionic dolphins. Firstly, the kinematic characteristics of the designed robot dolphin are analyzed, and the hardware basis is clarified. Second, aiming at the deficiency of the tail motor, which cannot effectively cooperate with the waist joint motor during high-frequency movement, a compensation model for the friction force and latex skin-restoring force is designed, and a joint angle control algorithm based on fuzzy inference is proposed to realize the tracking of the desired joint angle for the tail joint in torque mode. In addition, a tail joint closed-loop control scheme based on angle of attack feedback is proposed to improve the motion performance. Finally, experiments verify the effectiveness of the proposed motion control scheme.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2313-7673
2313-7673
DOI:10.3390/biomimetics8030291