Effects of side chain length on ionization behavior and transbilayer transport of unconjugated dihydroxy bile acids: a comparison of nor-chenodeoxycholic acid and chenodeoxycholic acid
13C-NMR spectroscopy was used to examine the effect of side chain length on the ionization properties and transmembrane transport rate of 3 alpha,7 alpha-dihydroxy bile acids. When solubilized in taurocholate micelles, [23-13C]nor-chenodeoxycholic acid (nor-CDCA) had a pKa of 6.1, similar to that of...
Saved in:
Published in | Journal of lipid research Vol. 35; no. 5; pp. 883 - 892 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
BETHESDA
Elsevier Inc
01.05.1994
Amer Soc Biochemistry Molecular Biology Inc Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | 13C-NMR spectroscopy was used to examine the effect of side chain length on the ionization properties and transmembrane transport rate of 3 alpha,7 alpha-dihydroxy bile acids. When solubilized in taurocholate micelles, [23-13C]nor-chenodeoxycholic acid (nor-CDCA) had a pKa of 6.1, similar to that of CDCA (pKa 6.2), its C24 homologue. In unilamellar phosphatidylcholine vesicles, the pKa of nor-CDCA was 7.0, whereas that of CDCA was 6.6. Lineshape analysis indicated that the rate of ionization of nor-CDCA as a micellar solute or as a vesicle component was very slow (0.4 x 10(5) sec-1) compared to that of acetic acid in water (8.7 x 10(5) sec-1). Lineshape analysis of spectra of the protonated form of nor-CDCA at acidic bulk pH indicated that the transbilayer transport rate of nor-CDCA (580 sec-1) was six times faster than that of CDCA (100 sec-1). It is proposed that the shorter side chain of the nor-CDCA molecule causes it to reside more deeply inside the vesicle bilayer than CDCA, explaining its weaker ionization and more rapid flip-flop rate. These in vitro experiments imply that, in vivo, a given C23 nor-dihydroxy bile acid will ionize less readily when present in membranes, and it will also flip-flop faster than its C24 homologue. |
---|---|
Bibliography: | Medline NIH RePORTER ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0022-2275 1539-7262 |
DOI: | 10.1016/S0022-2275(20)39182-3 |