Optimization-driven framework to understand health care network costs and resource allocation
In the last several decades, the U.S. Health care industry has undergone a massive consolidation process that has resulted in the formation of large delivery networks. However, the integration of these networks into a unified operational system faces several challenges. Strategic problems, such as e...
Saved in:
Published in | Health care management science Vol. 24; no. 3; pp. 640 - 660 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.09.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In the last several decades, the U.S. Health care industry has undergone a massive consolidation process that has resulted in the formation of large delivery networks. However, the integration of these networks into a unified operational system faces several challenges. Strategic problems, such as ensuring access, allocating resources and capacity efficiently, and defining case-mix in a multi-site network, require the correct modeling of network costs, network trade-offs, and operational constraints. Unfortunately, traditional practices related to cost accounting, specifically the allocation of overhead and labor cost to activities as a way to account for the consumption of resources, are not suitable for addressing these challenges; they confound resource allocation and network building capacity decisions. We develop a general methodological optimization-driven framework based on linear programming that allows us to better understand network costs and provide strategic solutions to the aforementioned problems. We work in collaboration with a network of hospitals to demonstrate our framework applicability and important insights derived from it. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1386-9620 1572-9389 |
DOI: | 10.1007/s10729-021-09565-1 |