Intrinsic cooperativity potentiates parallel cis -regulatory evolution

Convergent evolutionary events in independent lineages provide an opportunity to understand why evolution favors certain outcomes over others. We studied such a case where a large set of genes-those coding for the ribosomal proteins-gained -regulatory sequences for a particular transcription regulat...

Full description

Saved in:
Bibliographic Details
Published ineLife Vol. 7
Main Authors Sorrells, Trevor R, Johnson, Amanda N, Howard, Conor J, Britton, Candace S, Fowler, Kyle R, Feigerle, Jordan T, Weil, P Anthony, Johnson, Alexander D
Format Journal Article
LanguageEnglish
Published England eLife Science Publications, Ltd 10.09.2018
eLife Sciences Publications Ltd
eLife Sciences Publications, Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Convergent evolutionary events in independent lineages provide an opportunity to understand why evolution favors certain outcomes over others. We studied such a case where a large set of genes-those coding for the ribosomal proteins-gained -regulatory sequences for a particular transcription regulator (Mcm1) in independent fungal lineages. We present evidence that these gains occurred because Mcm1 shares a mechanism of transcriptional activation with an ancestral regulator of the ribosomal protein genes, Rap1. Specifically, we show that Mcm1 and Rap1 have the inherent ability to cooperatively activate transcription through contacts with the general transcription factor TFIID. Because the two regulatory proteins share a common interaction partner, the presence of one ancestral -regulatory sequence can 'channel' random mutations into functional sites for the second regulator. At a genomic scale, this type of intrinsic cooperativity can account for a pattern of parallel evolution involving the fixation of hundreds of substitutions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
AC02-05CH11231
USDOE Office of Science (SC), Biological and Environmental Research (BER). Biological Systems Science Division
ISSN:2050-084X
2050-084X
DOI:10.7554/eLife.37563