Abundant diversity of accessory genetic elements and associated antimicrobial resistance genes in pseudomonas aeruginosa isolates from a single Chinese hospital

Pseudomonas aeruginosa has intrinsic antibiotic resistance and the strong ability to acquire additional resistance genes. However, a limited number of investigations provide detailed modular structure dissection and evolutionary analysis of accessory genetic elements (AGEs) and associated resistance...

Full description

Saved in:
Bibliographic Details
Published inAnnals of clinical microbiology and antimicrobials Vol. 22; no. 1; p. 51
Main Authors Mu, Xiaofei, Li, Xinyue, Yin, Zhe, Jing, Ying, Chen, Fangzhou, Gao, Huixia, Zhang, Zhi, Tian, Yueyang, Guo, Huiqian, Lu, Xiuhui, He, Jiaqi, Zheng, Yali, Zhou, Dongsheng, Wang, Peng, Dai, Erhei
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 29.06.2023
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Pseudomonas aeruginosa has intrinsic antibiotic resistance and the strong ability to acquire additional resistance genes. However, a limited number of investigations provide detailed modular structure dissection and evolutionary analysis of accessory genetic elements (AGEs) and associated resistance genes (ARGs) in P. aeruginosa isolates. The objective of this study is to reveal the prevalence and transmission characteristics of ARGs by epidemiological investigation and bioinformatics analysis of AGEs of P. aeruginosa isolates taken from a Chinese hospital. Draft-genome sequencing was conducted for P. aeruginosa clinical isolates (n = 48) collected from a single Chinese hospital between 2019 and 2021. The clones of P. aeruginosa isolates, type 3 secretion system (T3SS)-related virulotypes, and the resistance spectrum were identified using multilocus sequence typing (MLST), polymerase chain reaction (PCR), and antimicrobial susceptibility tests. In addition, 17 of the 48 isolates were fully sequenced. An extensive modular structure dissection and genetic comparison was applied to AGEs of the 17 sequenced P. aeruginosa isolates. From the draft-genome sequencing, 13 STs were identified, showing high genetic diversity. BLAST search and PCR detection of T3SS genes (exoT, exoY, exoS, and exoU) revealed that the exoS+/exoU- virulotype dominated. At least 69 kinds of acquired ARGs, involved in resistance to 10 different categories of antimicrobials, were identified in the 48 P. aeruginosa isolates. Detailed genetic dissection and sequence comparisons were applied to 25 AGEs from the 17 isolates, together with five additional prototype AGEs from GenBank. These 30 AGEs were classified into five groups -- integrative and conjugative elements (ICEs), unit transposons, Inc plasmids, Inc plasmids, and Inc plasmids. This study provides a broad-scale and deeper genomics understanding of P. aeruginosa isolates taken from a single Chinese hospital. The isolates collected are characterized by high genetic diversity, high virulence, and multiple drug resistance. The AGEs in P. aeruginosa chromosomes and plasmids, as important genetic platforms for the spread of ARGs, contribute to enhancing the adaptability of P. aeruginosa in hospital settings.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1476-0711
1476-0711
DOI:10.1186/s12941-023-00600-3