Relating dissolved organic matter fluorescence and functional properties
The fluorescence excitation–emission matrix properties of 25 dissolved organic matter samples from three rivers and one lake are analysed. All sites are sampled in duplicate, and the 25 samples include ten taken from the lake site, and nine from one of the rivers, to cover variations in dissolved or...
Saved in:
Published in | Chemosphere (Oxford) Vol. 73; no. 11; pp. 1765 - 1772 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.12.2008
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The fluorescence excitation–emission matrix properties of 25 dissolved organic matter samples from three rivers and one lake are analysed. All sites are sampled in duplicate, and the 25 samples include ten taken from the lake site, and nine from one of the rivers, to cover variations in dissolved organic matter composition due to season and river flow. Fluorescence properties are compared to the functional properties of the dissolved organic matter; the functional assays provide quantitative information on photochemical fading, buffering capacity, copper binding, benzo[
a]pyrene binding, hydrophilicity and adsorption to alumina. Optical (absorbance and fluorescence) characterization of the dissolved organic matter samples demonstrates that (1) peak C (excitation 300–350
nm; emission 400–460
nm) fluorescence emission wavelength; (2) the ratio of peak T (excitation 220–235
nm; emission 330–370
nm) to peak C fluorescence intensity; and (3) the peak C fluorescence intensity: absorbance at 340
nm ratio have strong correlations with many of the functional assays. Strongest correlations are with benzo[
a]pyrene binding, alumina adsorption, hydrophilicity and buffering capacity, and in many cases linear regression equations with a correlation coefficient >0.8 are obtained. These optical properties are independent of freshwater dissolved organic carbon concentration (for concentrations <10
mg
L
−1) and therefore hold the potential for laboratory, field and on-line monitoring and prediction of organic matter functional properties. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0045-6535 1879-1298 |
DOI: | 10.1016/j.chemosphere.2008.09.018 |