基于二进制量子粒子群算法的含分布式电源配电网重构
配电网重构是一个复杂的非线性组合优化问题。为了克服基本优化算法易陷入局部最优解的问题,提出了一种改进的二进制量子粒子群算法(BQPSO),对含分布式电源(DG)的配电网重构模型进行求解。通过引入遗传算法的交叉操作和变异操作来避免早熟来提高算法的全局搜索能力,改进了算法的性能。并且选择了适当的不可行解处理方式来提高了算法的计算效率。最后通过对IEEE33节点配电系统进行仿真,验证所提算法在求解重构问题时得到的解更好,收敛速度和全局寻优能力都有提升。...
Saved in:
Published in | 电力系统保护与控制 Vol. 44; no. 4; pp. 22 - 28 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
三峡大学电气与新能源学院,湖北 宜昌,443002
2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-3415 |
DOI | 10.7667/PSPC150698 |
Cover
Abstract | 配电网重构是一个复杂的非线性组合优化问题。为了克服基本优化算法易陷入局部最优解的问题,提出了一种改进的二进制量子粒子群算法(BQPSO),对含分布式电源(DG)的配电网重构模型进行求解。通过引入遗传算法的交叉操作和变异操作来避免早熟来提高算法的全局搜索能力,改进了算法的性能。并且选择了适当的不可行解处理方式来提高了算法的计算效率。最后通过对IEEE33节点配电系统进行仿真,验证所提算法在求解重构问题时得到的解更好,收敛速度和全局寻优能力都有提升。 |
---|---|
AbstractList | 配电网重构是一个复杂的非线性组合优化问题。为了克服基本优化算法易陷入局部最优解的问题,提出了一种改进的二进制量子粒子群算法(BQPSO),对含分布式电源(DG)的配电网重构模型进行求解。通过引入遗传算法的交叉操作和变异操作来避免早熟来提高算法的全局搜索能力,改进了算法的性能。并且选择了适当的不可行解处理方式来提高了算法的计算效率。最后通过对IEEE33节点配电系统进行仿真,验证所提算法在求解重构问题时得到的解更好,收敛速度和全局寻优能力都有提升。 配电网重构是一个复杂的非线性组合优化问题。为了克服基本优化算法易陷入局部最优解的问题,提出了一种改进的二进制量子粒子群算法(BQPSO),对含分布式电源(DG)的配电网重构模型进行求解。通过引入遗传算法的交叉操作和变异操作来避免早熟来提高算法的全局搜索能力,改进了算法的性能。并且选择了适当的不可行解处理方式来提高了算法的计算效率。最后通过对 IEEE33节点配电系统进行仿真,验证所提算法在求解重构问题时得到的解更好,收敛速度和全局寻优能力都有提升。 |
Abstract_FL | Reconstruction of distribution network is a complex nonlinear combinatorial optimization problem. This paper presents an improved binary quantum particle swarm optimization (BQPSO), in order to overcome the basic optimization algorithm is easy to fall into local optimal solution.The algorithm is used to solve the reconstruction of the distribution network model with distributed generation (DG).By introducing the crossover operation and mutation operation of genetic algorithm to jump out precocity to improve the global search ability of the algorithm, the performance of the algorithm is improved.And the appropriate way of infeasible solution treatment is selected to improve the computational efficiency of the algorithm.Finally, through the IEEE33 node distribution system simulation, it is verified that the algorithm proposed is better in solving the reconstruction problem, and convergence speed and global optimization ability are improved. |
Author | 张涛 史苏怡 徐雪琴 |
AuthorAffiliation | 三峡大学电气与新能源学院,湖北宜昌443002 |
AuthorAffiliation_xml | – name: 三峡大学电气与新能源学院,湖北 宜昌,443002 |
Author_FL | SHI Suyi ZHANG Tao XU Xueqin |
Author_FL_xml | – sequence: 1 fullname: ZHANG Tao – sequence: 2 fullname: SHI Suyi – sequence: 3 fullname: XU Xueqin |
Author_xml | – sequence: 1 fullname: 张涛 史苏怡 徐雪琴 |
BookMark | eNotkE1LAlEYhe_CIDM3_YRoO_Xeud_LkMpASMi93HFmTKkxlYjWWbrInKIICmrTLmpRFDH08We8Tv6LJmxzzlk8nPflzKBU0Ag8hOYwLArOxVJxs5jDDLiSKZTGXFCLUMymUbbdrjkABDPGpUqjvLmLhtHpMDr5-b4xvbdxd2Aew_j5_E-_7uOnq9HLZXzdMeGD6R2b90PzMYgvXkdROD7qJyH-PBt3-6Pbziya8vV228v-ewaVVldKubxV2Fhbzy0XrArj1FKYOq4WwIlQmGBPc5I8KV3bYQxXNHUpBe6DBKp8cB1PeQ7jBBxb-zZzlCQZtDCp3deBr4Nqud7YawXJwXLdbdqAOVAAmmDzE6yy1QiqzVoC7rZqO7p1UE7WERJLKsgvsGdw3Q |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.7667/PSPC150698 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitleAlternate | Distribution network reconfiguration with distributed generation based on improved quantum binary particle swarm optimization |
DocumentTitle_FL | Distribution network reconfiguration with distributed generation based on improved quantum binary particle swarm optimization |
EndPage | 28 |
ExternalDocumentID | jdq201604004 667781847 |
GrantInformation_xml | – fundername: 国家自然科学基金项目(51307097) This work is supported by National Natural Science Foundation of China funderid: (51307097) |
GroupedDBID | -03 2RA 5XA 5XD 92L ALMA_UNASSIGNED_HOLDINGS CCEZO CEKLB CQIGP GROUPED_DOAJ U1G W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
ID | FETCH-LOGICAL-c564-914bda706379131ea635068d2b551ca4d4406f08049f0dbe9eb5630b2af25b983 |
ISSN | 1674-3415 |
IngestDate | Thu May 29 04:03:02 EDT 2025 Wed Feb 14 10:24:56 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | 遗传算法 二进制量子粒子群 配电网重构 distribution network reconfiguration 分布式电源 genetic algorithms distributed generation (DG) binary quantum particle swarm optimization (BQPSO) |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c564-914bda706379131ea635068d2b551ca4d4406f08049f0dbe9eb5630b2af25b983 |
Notes | Reconstruction of distribution network is a complex nonlinear combinatorial optimization problem. This paper presents an improved binary quantum particle swarm optimization (BQPSO), in order to overcome the basic optimization algorithm is easy to fall into local optimal solution. The algorithm is used to solve the reconstruction of the distribution network model with distributed generation (DG). By introducing the crossover operation and mutation operation of genetic algorithm to jump out precocity to improve the global search ability of the algorithm, the performance of the algorithm is improved. And the appropriate way of infeasible solution treatment is selected to improve the computational efficiency of the algorithm. Finally, through the IEEE33 node distribution system simulation, it is verified that the algorithm proposed is better in solving the reconstruction problem, and convergence speed and global optimization ability are improved. ZHANG Tao, SHI Suyi, XU Xueqin (College of Electrical Engineering an |
PageCount | 7 |
ParticipantIDs | wanfang_journals_jdq201604004 chongqing_primary_667781847 |
PublicationCentury | 2000 |
PublicationDate | 2016 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – year: 2016 text: 2016 |
PublicationDecade | 2010 |
PublicationTitle | 电力系统保护与控制 |
PublicationTitleAlternate | Relay |
PublicationYear | 2016 |
Publisher | 三峡大学电气与新能源学院,湖北 宜昌,443002 |
Publisher_xml | – name: 三峡大学电气与新能源学院,湖北 宜昌,443002 |
SSID | ssib003155689 ssib017479473 ssib023166999 ssj0002912115 ssib051374514 ssib002424069 ssib036435463 |
Score | 2.1028032 |
Snippet | ... |
SourceID | wanfang chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 22 |
SubjectTerms | 二进制量子粒子群 分布式电源 遗传算法 配电网重构 |
Title | 基于二进制量子粒子群算法的含分布式电源配电网重构 |
URI | http://lib.cqvip.com/qk/90494A/201604/667781847.html https://d.wanfangdata.com.cn/periodical/jdq201604004 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEI7acuGCQIAopagHfEKBxHHs-OjselUhgSqxSL2tks2mFYcthfbSK4X2QGlBVEggwYUbggMIhFY8_kyzS_8FM05261ZIPC7W7Pj1zUweY29m7DiXvCSJ2qKdujRnqYvnIbkykLnbpkxEGXgAVGCg8PUbfPYWuzYfzo-N71pfLa2upFfaa7-NK_kfqwIP7IpRsv9g2dGgwAAa7AslWBjKv7Ix0SGRDRIrohmWkR4SNaIjEjeIjLFNBDQnWhJY-UcN5Kg6kR7RgsSUSHqYo4liSChNpCCakzggMkSOhJGZmdQjajhyxJGIgQgMUTNTQGNAEpruyowMs0P7ulUFc8Gk_hBYHRtLTcrD3IYes9UeuisjkUBIcUnEqAGUGoQ1I0AbxM8MJG04IJEY6WF4iVVglWcwwsyxXQMygGpAiVFs5OH4SYjyD3XWlVwASSmD0yMxs_dRygBPc80PEUnTNYCxjNZZBQ3Ur_hhtXlI23JIw9RG03HdUu2oO2CRRFG4b0ytxC4oTA0sedm0A8ymTkbIpTXGAs-ztn4xXMQFnyO07kpmv3qo5cSUAfdHX4-Cc_yDfu7mXA0TS5bHfx9JN347W0btmGf7uHOMCuGH1k5F5dVhvLT1WsA0dqPfsGLgXB6scgNweu1DF0I_ECys_rxHh4lKzDOIHxuPZCwTCSPeqwdoMf3J4lJ3YRmcOhNj182T7oLlDjZPOieqddyMKm_KU87Y2uJpZ7Z43dvrPd7rPfr542Wx-Xl_Y7t4tzP48BTL728G75_3P-4OXqwXO2-LzYfFl_vF1-3Bs0_93s7-gy0gBt-e7G9s9V-tn3GaDd2szbrVUSVuO-QMPAaWZokAd19IP_A7CbjxHo8ymsKCpJ2wjIHCclicMZl7WdqRnRTz8qU0yWmYyig460x0l7qdc86M72c04yKNRMcHxzGXCfNlxkOWBT4QYtKZGimhdafMSNPimAbSB0dz0pmu1NKqnlP3WrZFz_-hfso5jnS5x3jBmVi5u9qZBq97Jb1oroFfnPOgbQ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E4%BA%8C%E8%BF%9B%E5%88%B6%E9%87%8F%E5%AD%90%E7%B2%92%E5%AD%90%E7%BE%A4%E7%AE%97%E6%B3%95%E7%9A%84%E5%90%AB%E5%88%86%E5%B8%83%E5%BC%8F%E7%94%B5%E6%BA%90%E9%85%8D%E7%94%B5%E7%BD%91%E9%87%8D%E6%9E%84&rft.jtitle=%E7%94%B5%E5%8A%9B%E7%B3%BB%E7%BB%9F%E4%BF%9D%E6%8A%A4%E4%B8%8E%E6%8E%A7%E5%88%B6&rft.au=%E5%BC%A0%E6%B6%9B&rft.au=%E5%8F%B2%E8%8B%8F%E6%80%A1&rft.au=%E5%BE%90%E9%9B%AA%E7%90%B4&rft.date=2016&rft.pub=%E4%B8%89%E5%B3%A1%E5%A4%A7%E5%AD%A6%E7%94%B5%E6%B0%94%E4%B8%8E%E6%96%B0%E8%83%BD%E6%BA%90%E5%AD%A6%E9%99%A2%2C%E6%B9%96%E5%8C%97+%E5%AE%9C%E6%98%8C%2C443002&rft.issn=1674-3415&rft.issue=4&rft.spage=22&rft.epage=28&rft_id=info:doi/10.7667%2FPSPC150698&rft.externalDocID=jdq201604004 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90494A%2F90494A.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjdq%2Fjdq.jpg |