基于二进制量子粒子群算法的含分布式电源配电网重构
配电网重构是一个复杂的非线性组合优化问题。为了克服基本优化算法易陷入局部最优解的问题,提出了一种改进的二进制量子粒子群算法(BQPSO),对含分布式电源(DG)的配电网重构模型进行求解。通过引入遗传算法的交叉操作和变异操作来避免早熟来提高算法的全局搜索能力,改进了算法的性能。并且选择了适当的不可行解处理方式来提高了算法的计算效率。最后通过对IEEE33节点配电系统进行仿真,验证所提算法在求解重构问题时得到的解更好,收敛速度和全局寻优能力都有提升。...
Saved in:
Published in | 电力系统保护与控制 Vol. 44; no. 4; pp. 22 - 28 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
三峡大学电气与新能源学院,湖北 宜昌,443002
2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-3415 |
DOI | 10.7667/PSPC150698 |
Cover
Summary: | 配电网重构是一个复杂的非线性组合优化问题。为了克服基本优化算法易陷入局部最优解的问题,提出了一种改进的二进制量子粒子群算法(BQPSO),对含分布式电源(DG)的配电网重构模型进行求解。通过引入遗传算法的交叉操作和变异操作来避免早熟来提高算法的全局搜索能力,改进了算法的性能。并且选择了适当的不可行解处理方式来提高了算法的计算效率。最后通过对IEEE33节点配电系统进行仿真,验证所提算法在求解重构问题时得到的解更好,收敛速度和全局寻优能力都有提升。 |
---|---|
Bibliography: | Reconstruction of distribution network is a complex nonlinear combinatorial optimization problem. This paper presents an improved binary quantum particle swarm optimization (BQPSO), in order to overcome the basic optimization algorithm is easy to fall into local optimal solution. The algorithm is used to solve the reconstruction of the distribution network model with distributed generation (DG). By introducing the crossover operation and mutation operation of genetic algorithm to jump out precocity to improve the global search ability of the algorithm, the performance of the algorithm is improved. And the appropriate way of infeasible solution treatment is selected to improve the computational efficiency of the algorithm. Finally, through the IEEE33 node distribution system simulation, it is verified that the algorithm proposed is better in solving the reconstruction problem, and convergence speed and global optimization ability are improved. ZHANG Tao, SHI Suyi, XU Xueqin (College of Electrical Engineering an |
ISSN: | 1674-3415 |
DOI: | 10.7667/PSPC150698 |