Retroelements and the Human Genome: New Perspectives on an Old Relation

Retroelements constitute a large portion of our genomes. One class of these elements, the human endogenous retroviruses (HERVs), is comprised of remnants of ancient exogenous retroviruses that have gained access to the germ line. After integration, most proviruses have been the subject of numerous a...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 101; no. Suppl 2; pp. 14572 - 14579
Main Authors Bannert, Norbert, Kurth, Reinhard
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 05.10.2004
National Acad Sciences
SeriesColloquium Paper
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Retroelements constitute a large portion of our genomes. One class of these elements, the human endogenous retroviruses (HERVs), is comprised of remnants of ancient exogenous retroviruses that have gained access to the germ line. After integration, most proviruses have been the subject of numerous amplifications and have suffered extensive deletions and mutations. Nevertheless, HERV-derived transcripts and proteins have been detected in healthy and diseased human tissues, and HERV-K, the youngest, most conserved family, is able to form virus-like particles. Although it is generally accepted that the integration of retroelements can cause significant harm by disrupting or disregulating essential genes, the role of HERV expression in the etiology of malignancies and autoimmune and neurologic diseases remains controversial. In recent years, striking evidence has accumulated indicating that some proviral sequences and HERV proteins might even serve the needs of the host and are therefore under positive selection. The remarkable progress in the analysis of host genomes has brought to light the significant impact of HERVs and other retroelements on genetic variation, genome evolution, and gene regulation.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ObjectType-Review-3
To whom correspondence should be addressed. E-mail: bannertn@rki.de.
Abbreviations: ERV, endogenous retrovirus; HERV, human ERV; SINE, short interspersed element; LINE, long-terminal interspersed element; HTDV, human tetratocarcinoma-derived virus.
This paper results from the Arthur M. Sackler Colloquium of the National Academy of Sciences, “Therapeutic Vaccines: Realities of Today and Hopes for Tomorrow,” held April 1–3, 2004, at the National Academy of Sciences in Washington, DC.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0404838101