Collaborative Continuum Robots for Remote Engineering Operations

In situ repair and maintenance of high-value industrial equipment is critical if they are to maintain the ability to continue vital operations. Conventional single-arm continuum robots have been proven numerous times to be successful tools for use in repair operations. However, often more than one a...

Full description

Saved in:
Bibliographic Details
Published inBiomimetics (Basel, Switzerland) Vol. 8; no. 1; p. 4
Main Authors Ma, Nan, Monk, Stephen, Cheneler, David
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 22.12.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In situ repair and maintenance of high-value industrial equipment is critical if they are to maintain the ability to continue vital operations. Conventional single-arm continuum robots have been proven numerous times to be successful tools for use in repair operations. However, often more than one arm is needed to ensure successful operation within several scenarios; thus, the collaborative operation of multiple arms is required. Here, we present the design and operating principles of a dual-arm continuum robot system designed to perform critical tasks within industrial settings. Here, presented are the design principle of the robotic system, the optimization-based inverse kinematic calculation of the 6-DoF continuum arms, and the collaborative operation strategy. The collaborative principle and algorithms used have been evaluated by a set of experiments to demonstrate the ability of the system to perform in situ machining operations. With the developed prototype and controller, the average error between planned and real toolpaths can be within 2.5 mm.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2313-7673
2313-7673
DOI:10.3390/biomimetics8010004