Kernel Estimation of Bivariate Time-Varying Coefficient Model for Longitudinal Data with Terminal Event

We propose a nonparametric bivariate time-varying coefficient model for longitudinal measurements with the occurrence of a terminal event that is subject to right censoring. The time-varying coefficients capture the longitudinal trajectories of covariate effects along with both the followup time and...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Statistical Association Vol. 119; no. 546; pp. 1102 - 1111
Main Authors Wang, Yue, Nan, Bin, Kalbfleisch, John D.
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis 02.04.2024
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We propose a nonparametric bivariate time-varying coefficient model for longitudinal measurements with the occurrence of a terminal event that is subject to right censoring. The time-varying coefficients capture the longitudinal trajectories of covariate effects along with both the followup time and the residual lifetime. The proposed model extends the parametric conditional approach given terminal event time in recent literature, and thus avoids potential model misspecification. We consider a kernel smoothing method for estimating regression coefficients in our model and use cross-validation for bandwidth selection, applying undersmoothing in the final analysis to eliminate the asymptotic bias of the kernel estimator. We show that the kernel estimates follow a finite-dimensional normal distribution asymptotically under mild regularity conditions, and provide an easily computed sandwich covariance matrix estimator. We conduct extensive simulations that show desirable performance of the proposed approach, and apply the method to analyzing the medical cost data for patients with end-stage renal disease. Supplementary materials for this article are available online.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0162-1459
1537-274X
1537-274X
DOI:10.1080/01621459.2023.2169702