Plasma exosome-derived microRNAs expression profiling and bioinformatics analysis under cross-talk between increased low-density lipoprotein cholesterol level and ATP-sensitive potassium channels variant rs1799858

Exosome-derived microRNAs (exo-miRs) as messengers play important roles, in the cross-talk between genetic [ATP-sensitive potassium channels (KATP) genetic variant rs1799858] and environmental [elevated serum low-density lipoprotein cholesterol (LDL-C) level] factors, but the plasma exo-miRs express...

Full description

Saved in:
Bibliographic Details
Published inJournal of translational medicine Vol. 18; no. 1; pp. 459 - 13
Main Authors Liu, Cheng, Lai, Yanxian, Ying, Songsong, Zhan, Junfang, Shen, Yan
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 03.12.2020
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Exosome-derived microRNAs (exo-miRs) as messengers play important roles, in the cross-talk between genetic [ATP-sensitive potassium channels (KATP) genetic variant rs1799858] and environmental [elevated serum low-density lipoprotein cholesterol (LDL-C) level] factors, but the plasma exo-miRs expression profile and its role in biological processes from genotype to phenotype remain unclear. A total of 14 subjects with increased LDL-C serum levels (≥ 1.8 mmol/L) were enrolled in the study. The KATP rs1799858 was genotyped by the Sequenom MassARRAY system. The plasma exo-miRs expression profile was identified by next-generation sequencing. 64 exo-miRs were significantly differentially expressed (DE), among which 44 exo-miRs were up-regulated and 20 exo-miRs were down-regulated in those subjects carrying T-allele (TT + CT) of rs1799858 compared to those carrying CC genotype. The top 20 up-regulated DE-exo-miRs were miR-378 family, miR-320 family, miR-208 family, miR-483-5p, miR-22-3p, miR-490-3p, miR-6515-5p, miR-31-5p, miR-210-3p, miR-17-3p, miR-6807-5p, miR-497-5p, miR-33a-5p, miR-3611 and miR-126-5p. The top 20 down-regulated DE-exo-miRs were let-7 family, miR-221/222 family, miR-619-5p, miR-6780a-5p, miR-641, miR-200a-5p, miR-581, miR-605-3p, miR-548ar-3p, miR-135a-3p, miR-451b, miR-509-3-5p, miR-4664-3p and miR-224-5p. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were subsequently implemented to identify the top 10 DE-exo-miRs related specific target genes and signaling pathways. Only 5 DE-exo-miRs were validated by qRT-PCR as follows: miR-31-5p, miR-378d, miR-619-5p, miR-320a-3p and let-7a-5p (all P < 0.05). These results firstly indicated the plasma exo-miRs expression profile bridging the link between genotype (KATP rs1799858) and phenotype (higher LDL-C serum level), these 5 DE-exo-miRs may be potential target intermediates for molecular intervention points.
ISSN:1479-5876
1479-5876
DOI:10.1186/s12967-020-02639-8