Simulator-based ultrasound training for identification of endotracheal tube placement in a neonatal intensive care unit using point of care ultrasound
Simulators are an extensively utilized teaching tool in clinical settings. Simulation enables learners to practice and improve their skills in a safe and controlled environment before using these skills on patients. We evaluated the effect of a training session utilizing a novel intubation ultrasoun...
Saved in:
Published in | BMC medical education Vol. 20; no. 1; p. 409 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
07.11.2020
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Simulators are an extensively utilized teaching tool in clinical settings. Simulation enables learners to practice and improve their skills in a safe and controlled environment before using these skills on patients. We evaluated the effect of a training session utilizing a novel intubation ultrasound simulator on the accuracy of provider detection of tracheal versus esophageal neonatal endotracheal tube (ETT) placement using point-of-care ultrasound (POCUS). We also investigated whether the time to POCUS image interpretation decreased with repeated simulator attempts.
Sixty neonatal health care providers participated in a three-hour simulator-based training session in the neonatal intensive care unit (NICU) of Aga Khan University Hospital (AKUH), Karachi, Pakistan. Participants included neonatologists, neonatal fellows, pediatric residents and senior nursing staff. The training utilized a novel low-cost simulator made with gelatin, water and psyllium fiber. Training consisted of a didactic session, practice with the simulator, and practice with intubated NICU patients. At the end of training, participants underwent an objective structured assessment of technical skills (OSATS) and ten rounds of simulator-based testing of their ability to use POCUS to differentiate between simulated tracheal and esophageal intubations.
The majority of the participants in the training had an average of 7.0 years (SD 4.9) of clinical experience. After controlling for gender, profession, years of practice and POCUS knowledge, linear mixed model and mixed effects logistic regression demonstrated marginal improvement in POCUS interpretation over repeated simulator testing. The mean time-to-interpretation decreased from 24.7 (SD 20.3) seconds for test 1 to 10.1 (SD 4.5) seconds for Test 10, p < 0.001. There was an average reduction of 1.3 s (β = - 1.3; 95% CI: - 1.66 to - 1.0) in time-to-interpretation with repeated simulator testing after adjusting for the covariates listed above.
We found a three-hour simulator-based training session had a significant impact on technical skills and performance of neonatal health care providers in identification of ETT position using POCUS. Further research is needed to examine whether these skills are transferable to intubated newborns in various health settings.
ClinicalTrials.gov Identifier: NCT03533218 . Registered May 2018. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1472-6920 1472-6920 |
DOI: | 10.1186/s12909-020-02338-4 |