Predicting the retinal content in omega‐3 fatty acids for age‐related macular‐degeneration

Dear Editor, Current treatments for age-related macular degeneration (AMD)―the leading cause of blindness in industrialized countries―are restricted to a single form of the disease and cannot always avoid severe visual loss.1 Among emerging preventive strategies, ω-3 polyunsaturated fatty acids (PUF...

Full description

Saved in:
Bibliographic Details
Published inClinical and Translational Medicine Vol. 11; no. 7; pp. e404 - n/a
Main Authors Acar, Niyazi, Merle, Bénédicte M. J., Ajana, Soufiane, He, Zhiguo, Grégoire, Stéphane, Hejblum, Boris P., Martine, Lucy, Buaud, Benjamin, Bron, Alain Marie, Creuzot‐garcher, Catherine, Korobelnik, Jean‐françois, Berdeaux, Olivier, Jacqmin-Gadda, Hélène, Brétillon, Lionel, Delcourt, Cécile, Cabaret, Stéphanie, Gain, Philippe, Cougnard-Grégoire, Audrey, Delyfer, Marie-Noëlle, Féart, Catherine, Febvret, Valérie, Thuret, Gilles, G., Vaysse, Carole
Format Journal Article
LanguageEnglish
Published United States Wiley 01.07.2021
John Wiley & Sons, Inc
Heidelberg : Springer-Verlag
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Dear Editor, Current treatments for age-related macular degeneration (AMD)―the leading cause of blindness in industrialized countries―are restricted to a single form of the disease and cannot always avoid severe visual loss.1 Among emerging preventive strategies, ω-3 polyunsaturated fatty acids (PUFAs) are enjoying interest as they promote normal retinal structure and function, reduce incidence, and slow progression of AMD, consistently with their abundance in retinal neurons. While more than 20 epidemiological studies have consistently shown a 40%-reduction in risk of AMD in subjects with high dietary intake of ω-3 PUFAs,2 and human donor studies have measured lower ω-3 PUFAs concentration in AMD eyes compared to age-matched controls,3 supplementation trials failed to impact disease progression.4,5 This controversy lies partly in the impossibility of directly assess the retinal ω-3 PUFAs content, making the use of a systemic biomarker a mandatory surrogate for tissue composition. TABLE 1 Fatty acid composition (%) of blood and eye tissues of human donors Retina Red blood cells Plasma Total Phosphatidylcholine Cholesteryl esters Median (IQR) Median (IQR) Median (IQR) Median (IQR) Median (IQR) C14:0 0.35 (0.13–0.46) 0.68 (0.32–1.39) 0.58 (0.43–0.83) 0.20 (0.11–0.25) 0.36 (0.16–0.77) C15:0 0.10 (0.07–0.13) 0.23 (0.17–0.29) 0.22 (0.18–0.27) 0.23 (0.15–0.31) 0.20 (0015–0.27) C16:0 19.65 (14.76–21.00) 24.34 (21.99–26.74) 23.42 (22.58–25.91) 27.15 (21.83–32.03) 12.67 (11.57–14.44) C16:1ω-9 0.75 (0.57–0.87) 0.30 (0.23–0.39) 0.30 (0.25–0.34) 0.16 (0.11–0.24) 0.33 (0.24–0.43) C16:1ω-7 0.55 (0.42–0.77) 2.30 (1.71–2.76) 2.72 (1.87–3.18) 0.48 (0.31–0.77) 3.27 (2.09–4.34) C17:0 0.15 (0.12–0.18) 0.36 (0.32–0.44) 0.33 (0.30–0.36) 0.47 (0.42–0.57) 0.13 (0.11–0.17) C18:0 20.52 (19.40–21.33) 9.21 (7.55–10.81) 6.39 (5.73–6.94) 13.33 (10.92–16.07) 0.87 (0.73–1.35) C18:1trans 0.12 (0.08–0.17) 0.44 (0.35–0.54) 0.47 (0.31–0.64) 0.42 (0.27–0.57) 0.58 (0.20–0.98) C18:1ω-9 15.46 (14.12–16.18) 29.13 (24.93–34.84) 29.00 (26.52–31.94) 15.42 (13.07–17.31) 25.97 (24.06–28.62) C18:1ω-7 3.13 (2.88–3.45) 2.28 (1.96–2.55) 2.50 (2.22–2.83) 2.37 (1.99–2.87) 2.14 (1.83–2.52) C18:2ω-6 1.61 (1.35–1.95) 12.29 (10.30–14.86) 19.95 (17.40–21.97) 16.91 (14.68–20.62) 41.84 (38.03–45.98) C20:0 0.53 (0.47–0.63) 0.17 (0.13–0.21) 0.14 (0.09–0.15) 0.17 (0.09–0.29) n.d. – C18:3ω-6 0.13 (0.11–0.16) n.d. – 0.13 (0.08–0.22) 0.21 (0.00–0.26) 0.37 (0.24–0.61) C20:1ω-9 0.56 (0.48–0.68) 0.39 (0.33–0.49) 0.27 (0.21–0.32) 0.25 (0.20–0.45) n.d. – C18:3ω-3 0.15 (0.13–0.19) 0.30 (0.20–0.41) 0.37 (0.31–0.54) 0.18 (0.14–0.26) 0.45 (0.31–0.56) C20:2ω-6 0.16 (0.13–0.20) 0.22 (0.18–0.25) 0.19 (0.16–0.24) 0.38 (0.30–0.52) n.d. – C20:3ω-9 0.31 (0.21–0.40) n.d. – 0.14 (0.11–0.19) 0.23 (0.19–0.33) n.d. – C22:0 0.36 (0.30–0.49) 0.23 (0.16–0.32) 0.17 (0.12–0.21) n.d. – n.d. – C20:3ω-6 1.57 (1.29–2.05) 0.67 (0.42–0.93) 0.78 (0.59–1.07) 2.34 (1.78–2.95) 0.60 (0.45–0.67) C22:1ω-9 0.10 (0.07–0.13) n.d. – n.d. – n.d. – n.d. – C20:4ω-6 10.92 (10.31–12.15) 6.18 (3.24–8.12) 5.43 (4.33–6.79) 9.14 (6.79–11.44) 6.30 (4.99–8.34) C24:0 0.30 (0.25–0.41) 0.39 (0.27–0.52) 0.10 (0.00–0.16) n.d. – n.d. – C20:5ω-3 0.18 (0.14–0.24) 0.28 (0.19–0.40) 0.43 (0.22–0.59) 0.63 (0.37–0.86) 0.62 (0.42–0.83) C24:1ω-9 0.11 (0.08–0.17) 0.64 (0.48–0.92) 0.42 (0.26–0.57) n.d. – n.d. – C22:4ω-6 1.37 (1.26–1.62) 0.83 (0.48–1.12) 0.26 (0.20–0.30) 0.40 (0.31–0.45) n.d. – C22:5ω-6 0.53 (0.43–0.71) 0.17 (0.11–0.27) 0.15 (0.12–0.19) 0.27 (0.21–0.37) n.d. – C22:5ω-3 1.04 (0.86–1.26) 0.83 (0.40–1.05) 0.45 (0.38–0.49) 1.02 (0.70–1.15) n.d. – C22:6ω-3 15.20 (13.09–16.87) 1.84 (0.70–2.31) 1.54 (1.27–1.89) 2.99 (2.21–4.20) 0.53 (0.41–0.67) total SFAs 45.34 (41.90–46.87) 38.41 (35.52–40.58) 32.40 (31.07–34.21) 42.63 (39.17–45.63) 14.80 (13.24–17.03) total MUFAs 21.49 (19.94–22.81) 36.48 (31.50–29.26) 36.42 (32.56–39.02) 19.48 (17.15–21.38) 33.14 (31.10–35.54) total PUFAs 33.41 (30.87–36.60) 25.25 (16.59–29.26) 30.70 (27.04–34.26) 36.86 (32.49–40.10) 51.7 (47.95–54.87) total ω-6 16.42 (15.55–19.07) 21.32 (14.80–24.91) 27.48 (24.18–30.89) 10.75 (7.82–12.66) 6.90 (5.23–8.72) total ω-3 16.79 (14.46–18.43) 3.41 (1.72–4.09) 2.89 (2.39–3.66) 4.95 (3.96–6.08) 1.63 (1.40–2.05) ω-6 / ω-3 ratio 1.04 (0.91–1.20) 7.45 (5.36–9.28) 9.49 (7.77–11.33) 2.12 (1.63–2.76) 4.34 (3.39–5.51) Abbreviations: IQR, interquartile range; MUFAs, monounsaturated fatty acids; n.d., not detected; PUFAs, polyunsaturated fatty acids; SFAs, saturated fatty acids. SEE PDF] TABLE 2 Characteristics of the participants to the case-control and LIMPIA studies Case-control study cases (n = 31) controls (n = 31) p value Age, mean (SD) (range), y 84.5 (4.2) (76.7–92.5) 84.2 (4.3) (76.8–90.7) 0.4 Female, no (%) 22 (71.0) 22 (71.0) – BMI, mean (SD), kg/m² 24.8 (3.0) (18.9–31.6) 24.8 (3.6) (18.1–34.7) 0.98 Plasma total cholesterol, mean (SD) (range), mmol/L 5.89 (0.98) (3.32–8.62) 5.59 (1.00) (3.00–7.56) 0.24 Plasma HDL cholesterol, mean (SD) (range), mmol/L 1.62 (0.34) (1.01–2.18) 1.45 (0.38) (0.82–2.22) 0.05 Plasma LDL cholesterol, mean (SD) (range), mmol/L 3.73 (0.84) (1.67–6.01) 3.57 (0.94) (1.14–5.55) Plasma triglycerides, mean (SD) (range), mmol/L 1.19 (0.53) (0.69–3.22) 1.26 (0.56) (0.40–2.37) 0.49 ω-3 Supplement use, yes (%) 6 (19.4) 1 (3.2) 0.10 Smoking, no (%) 0.55 Never smoker 19 (61.3) 21 (67.7) <20 pack-year 5 (16.1) 6 (19.3) ≥20pack-year 7 (22.6) 4 (13.0) LIMPIA study Supplemented (n = 29) Placebo (n = 26) p value Age, mean (SD) (range), y 57.7 (6.3) (44.6–70.2) 55.6 (6.9) (44.3–66.1) 0.22 Female, no (%) 22 (75.9) 20 (76.9) 0.93 BMI, mean (SD), kg/m² 24.2 (3.5) (19.2–31.3) 23.8 (3.8) (18.1–32.8) 0.74 Plasma total cholesterol, mean (SD) (range), mmol/L 5.85 (0.81) (4.32–7.62) 5.84 (0.72) (4.28–7.53) 0.95 Plasma HDL cholesterol, mean (SD) (range), mmol/L 1.73 (0.37) (1.14–2.54) 1.74 (0.56) (0.98–3.44) 0.94 Plasma LDL cholesterol, mean (SD) (range), mmol/L 3.58 (0.77) (1.74–4.98) 3.58 (0.73) (1.37–4.82) 0.99 Plasma triglycerides, mean (SD) (range), mmol/L 1.19 (0.44) (0.61–2.16) 1.14 (0.42) (0.50–1.98) 0.68 Smoking, no (%) 0.85 Never smoker 16 (61.5) 16 (55.2) <20 pack-year 6 (23.1) 7 (24.1) ≥20pack-year 4 (15.4) 6 (20.7) Abbreviations: BMI, body mass index; HDL, high density lipoprotein; LDL, low density lipoprotein; SD, standard deviation.
Bibliography:Bénédicte MJ Merle
These authors contributed equally to this work.
Lucy Martine
CHU de Bordeaux, Service d'Ophtalmologie, Bordeaux, F‐33000, France
Department of Ophthalmology, University Hospital, Dijon, France
Catherine Creuzot‐Garcher
Stéphane Grégoire
Valérie Febvret
Jean‐François Korobelnik
BLISAR STUDY GROUP: Niyazi Acar
Marie‐Noelle Delyfer
Catherine Féart
ITERG ‐ Equipe Nutrition Santé & Biochimie des Lipides, Canéjan, France
Lionel Bretillon
Audrey Cougnard‐Grégoire
Alain Bron
Zhiguo He
Soufiane Ajana
Olivier Berdeaux
Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche‐Comté, Dijon, France
Gilles Thuret
Laboratory for Biology, Imaging, and Engineering of Corneal Grafts, EA2521, Faculty of Medicine, University Jean Monnet, Saint‐Etienne, France
1
2
3
4
Carole Vaysse
5
6
Benjamin Buaud
Cécile Delcourt
1,3
Stéphanie Cabaret
Univ. Bordeaux, INSERM, Bordeaux Population Health Research Center, team LEHA, UMR 1219, F‐33000 Bordeaux, France
Philippe Gain
2,6
SourceType-Scholarly Journals-1
ObjectType-Correspondence-1
content type line 14
ObjectType-Article-2
content type line 23
PMCID: PMC8243522
BLISAR STUDY GROUP: Niyazi Acar1, Soufiane Ajana2, Olivier Berdeaux1, Lionel Bretillon1, Alain Bron1,3, Benjamin Buaud4, Stéphanie Cabaret1, Philippe Gain5, Audrey Cougnard‐Grégoire2, Catherine Creuzot‐Garcher1,3, Cécile Delcourt2, Marie‐Noelle Delyfer2,6, Catherine Féart2, Valérie Febvret1, Stéphane Grégoire1, Zhiguo He5, Jean‐François Korobelnik2,6, Lucy Martine1, Bénédicte MJ Merle2, Gilles Thuret5, Carole Vaysse4
1Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche‐Comté, Dijon, France 2Univ. Bordeaux, INSERM, Bordeaux Population Health Research Center, team LEHA, UMR 1219, F‐33000 Bordeaux, France 3Department of Ophthalmology, University Hospital, Dijon, France 4ITERG ‐ Equipe Nutrition Santé & Biochimie des Lipides, Canéjan, France 5Laboratory for Biology, Imaging, and Engineering of Corneal Grafts, EA2521, Faculty of Medicine, University Jean Monnet, Saint‐Etienne, France 6CHU de Bordeaux, Service d'Ophtalmologie, Bordeaux, F‐33000, France
ISSN:2001-1326
2001-1326
DOI:10.1002/ctm2.404