Myrtenol improves brain damage and promotes angiogenesis in rats with cerebral infarction by activating the ERK1/2 signalling pathway

Cerebral ischaemia/reperfusion (I/R) injury has a high disability and fatality worldwide. Myrtenol has protective effects on myocardial I/R injury through antioxidant and anti-apoptotic effects. This study investigated the effect of myrtenol on cerebral ischaemia/reperfusion (I/R) injury and the und...

Full description

Saved in:
Bibliographic Details
Published inPharmaceutical biology Vol. 59; no. 1; pp. 582 - 591
Main Authors Huang, Shengming, Tan, Zhanguo, Cai, Jirui, Wang, Zhiping, Tian, Yuejun
Format Journal Article
LanguageEnglish
Published England Taylor & Francis 01.01.2021
Taylor & Francis Ltd
Taylor & Francis Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Cerebral ischaemia/reperfusion (I/R) injury has a high disability and fatality worldwide. Myrtenol has protective effects on myocardial I/R injury through antioxidant and anti-apoptotic effects. This study investigated the effect of myrtenol on cerebral ischaemia/reperfusion (I/R) injury and the underlying mechanism. Cerebral I/R injury was induced in adult Sprague-Dawley rats by middle cerebral artery occlusion (MCAO) for 90 min. MCAO rats were treated with or without myrtenol (10, 30, or 50 mg/kg/day) or/and U0126 (10 μL) intraperitoneally for 7 days. In the present study, myrtenol had no toxicity at concentrations up to 1.3 g/kg. Myrtenol treatment improved neurological function of MCAO rats, with significantly (p < 0.05) improved neurological deficits (4.31 ± 1.29 vs. 0.00) and reduced brain edoema (78.95 ± 2.27% vs. 85.48 ± 1.24%). Myrtenol extenuated brain tissue injury and neuronal apoptosis, with increased Bcl-2 expression (0.48-fold) and decreased Bax expression (2.02-fold) and caspase-3 activity (1.36-fold). Myrtenol promoted angiogenesis in the brain tissues of MCAO rats, which was reflected by increased VEGF (0.86-fold) and FGF2 (0.51-fold). Myrtenol promoted the phosphorylation of MEK1/2 (0.80-fold) and ERK1/2 (0.97-fold) in MCAO rats. U0126, the inhibitor of ERK1/2 pathway, reversed the protective effects of myrtenol on brain tissue damage and angiogenesis in MCAO rats. Myrtenol reduced brain damage and angiogenesis through activating the ERK1/2 signalling pathway, which may provide a novel alternative strategy for preventing cerebral I/R injury. Further in vitro work detailing its mechanism-of-action for improving ischaemic cerebral infarction is needed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1388-0209
1744-5116
DOI:10.1080/13880209.2021.1917626