Golgi organization is regulated by proteasomal degradation

The Golgi is a dynamic organelle whose correct assembly is crucial for cellular homeostasis. Perturbations in Golgi structure are associated with numerous disorders from neurodegeneration to cancer. However, whether and how dispersal of the Golgi apparatus is actively regulated under stress, and the...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 11; no. 1; pp. 409 - 14
Main Authors Eisenberg-Lerner, Avital, Benyair, Ron, Hizkiahou, Noa, Nudel, Neta, Maor, Roey, Kramer, Matthias P, Shmueli, Merav D, Zigdon, Inbal, Cherniavsky Lev, Marina, Ulman, Adi, Sagiv, Jitka Yehudith, Dayan, Molly, Dassa, Bareket, Rosenwald, Mercedes, Shachar, Idit, Li, Jie, Wang, Yanzhuang, Dezorella, Nili, Khan, Suman, Porat, Ziv, Shimoni, Eyal, Avinoam, Ori, Merbl, Yifat
Format Journal Article
LanguageEnglish
Published England Nature Publishing Group 21.01.2020
Nature Publishing Group UK
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The Golgi is a dynamic organelle whose correct assembly is crucial for cellular homeostasis. Perturbations in Golgi structure are associated with numerous disorders from neurodegeneration to cancer. However, whether and how dispersal of the Golgi apparatus is actively regulated under stress, and the consequences of Golgi dispersal, remain unknown. Here we demonstrate that 26S proteasomes are associated with the cytosolic surface of Golgi membranes to facilitate Golgi Apparatus-Related Degradation (GARD) and degradation of GM130 in response to Golgi stress. The degradation of GM130 is dependent on p97/VCP and 26S proteasomes, and required for Golgi dispersal. Finally, we show that perturbation of Golgi homeostasis induces cell death of multiple myeloma in vitro and in vivo, offering a therapeutic strategy for this malignancy. Taken together, this work reveals a mechanism of Golgi-localized proteasomal degradation, providing a functional link between proteostasis control and Golgi architecture, which may be critical in various secretion-related pathologies.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-14038-9