Development of a one-run real-time PCR detection system for pathogens associated with poultry infectious diseases

Infectious diseases are an important issue in the poultry industry, requiring early diagnosis and countermeasures. To address this, we present a system based on TaqMan real-time PCR to detect pathogen genome in specimens collected from chickens. We designed 12 primer–probe sets for pathogens causing...

Full description

Saved in:
Bibliographic Details
Published inJournal of Veterinary Medical Science Vol. 85; no. 4; pp. 407 - 411
Main Authors SHIBANUMA, Takuya, NUNOMURA, Yuka, OBA, Mami, KAWAHARA, Fumiya, MIZUTANI, Tetsuya, TAKEMAE, Hitoshi
Format Journal Article
LanguageEnglish
Published Japan JAPANESE SOCIETY OF VETERINARY SCIENCE 2023
Japan Science and Technology Agency
The Japanese Society of Veterinary Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Infectious diseases are an important issue in the poultry industry, requiring early diagnosis and countermeasures. To address this, we present a system based on TaqMan real-time PCR to detect pathogen genome in specimens collected from chickens. We designed 12 primer–probe sets for pathogens causing respiratory or systemic symptoms. In field samples, we detected three viruses, including DNA and RNA viruses, and three bacteria. The chicken anemia virus and Avibacterium paragallinarum were detected only in young and laying hens, respectively. Bacteria were detected only in throat swabs, and gallid alphaherpesvirus 2 was detected in different specimens at each developmental stage. Our novel TaqMan real-time PCR system effectively detects pathogen’s gene in chickens, while taking age into account.
AbstractList Infectious diseases are an important issue in the poultry industry, requiring early diagnosis and countermeasures. To address this, we present a system based on TaqMan real-time PCR to detect pathogen genome in specimens collected from chickens. We designed 12 primer–probe sets for pathogens causing respiratory or systemic symptoms. In field samples, we detected three viruses, including DNA and RNA viruses, and three bacteria. The chicken anemia virus and Avibacterium paragallinarum were detected only in young and laying hens, respectively. Bacteria were detected only in throat swabs, and gallid alphaherpesvirus 2 was detected in different specimens at each developmental stage. Our novel TaqMan real-time PCR system effectively detects pathogen’s gene in chickens, while taking age into account.
Infectious diseases are an important issue in the poultry industry, requiring early diagnosis and countermeasures. To address this, we present a system based on TaqMan real-time PCR to detect pathogen genome in specimens collected from chickens. We designed 12 primer-probe sets for pathogens causing respiratory or systemic symptoms. In field samples, we detected three viruses, including DNA and RNA viruses, and three bacteria. The chicken anemia virus and Avibacterium paragallinarum were detected only in young and laying hens, respectively. Bacteria were detected only in throat swabs, and gallid alphaherpesvirus 2 was detected in different specimens at each developmental stage. Our novel TaqMan real-time PCR system effectively detects pathogen's gene in chickens, while taking age into account.Infectious diseases are an important issue in the poultry industry, requiring early diagnosis and countermeasures. To address this, we present a system based on TaqMan real-time PCR to detect pathogen genome in specimens collected from chickens. We designed 12 primer-probe sets for pathogens causing respiratory or systemic symptoms. In field samples, we detected three viruses, including DNA and RNA viruses, and three bacteria. The chicken anemia virus and Avibacterium paragallinarum were detected only in young and laying hens, respectively. Bacteria were detected only in throat swabs, and gallid alphaherpesvirus 2 was detected in different specimens at each developmental stage. Our novel TaqMan real-time PCR system effectively detects pathogen's gene in chickens, while taking age into account.
Infectious diseases are an important issue in the poultry industry, requiring early diagnosis and countermeasures. To address this, we present a system based on TaqMan real-time PCR to detect pathogen genome in specimens collected from chickens. We designed 12 primer–probe sets for pathogens causing respiratory or systemic symptoms. In field samples, we detected three viruses, including DNA and RNA viruses, and three bacteria. The chicken anemia virus and Avibacterium paragallinarum were detected only in young and laying hens, respectively. Bacteria were detected only in throat swabs, and gallid alphaherpesvirus 2 was detected in different specimens at each developmental stage. Our novel TaqMan real-time PCR system effectively detects pathogen’s gene in chickens, while taking age into account.
ArticleNumber 22-0482
Author KAWAHARA, Fumiya
NUNOMURA, Yuka
MIZUTANI, Tetsuya
TAKEMAE, Hitoshi
SHIBANUMA, Takuya
OBA, Mami
Author_xml – sequence: 1
  fullname: SHIBANUMA, Takuya
  organization: Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
– sequence: 2
  fullname: NUNOMURA, Yuka
  organization: Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
– sequence: 3
  fullname: OBA, Mami
  organization: Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
– sequence: 4
  fullname: KAWAHARA, Fumiya
  organization: Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
– sequence: 5
  fullname: MIZUTANI, Tetsuya
  organization: Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
– sequence: 6
  fullname: TAKEMAE, Hitoshi
  organization: Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36792182$$D View this record in MEDLINE/PubMed
BookMark eNp1kc-PEyEcxYlZ43ZXb54NiRcPzgoMA8PJaP2ZbKIxeyeU-U5LMwNdYGr638vY2ugmXuDw_bzH9_Gu0IUPHhB6TskNZYq92e7HdMNYRXjLHqEFrbmsJK_VBVoQRUUlWUMu0VVKW0IY5UI9QZe1kIrRli3Q_QfYwxB2I_iMQ48NLu5VnDyOYIYquxHw9-UP3EEGm13wOB1ShhH3IeKdyZuwBp-wSSlYZzJ0-KfLG7wL05DjATvf_5ZNCXcugUmQnqLHvRkSPDvd1-ju08e75Zfq9tvnr8t3t5VtBMuVUlKtVq3kIFouO1g1taBs1YE1YGvoiSCNoD2jTW1aRUhDmbGigFxJW4v6Gr092u6m1QidLfmiGfQuutHEgw7G6X8n3m30Ouw1JbRWslXF4dXJIYb7CVLWo0sWhsF4KIE0k1JyUn5SFvTlA3QbpuhLPM3a0ohiXPBCvfh7pfMuf9oowOsjYGNIKUJ_RijRc9l6LlszpueyC84e4NZlM5dUArnhf6L3R9E2ZbOG8wsmZmcHOMJto_l8nETnod2YqMHXvwAU8Mfo
CitedBy_id crossref_primary_10_1080_00439339_2024_2416682
crossref_primary_10_3390_app14125031
Cites_doi 10.1292/jvms.16-0489
10.1177/1040638711416631
10.1016/j.virol.2017.11.021
10.1016/j.psj.2021.101523
10.1128/iai.8.5.715-724.1973
10.20506/rst.15.4.986
10.1016/j.epidem.2019.01.004
10.4142/jvs.2018.19.3.350
10.1292/jvms.19-0063
10.1007/s00705-004-0369-9
10.1017/S1751731107001097
10.1016/j.jviromet.2016.03.002
10.1093/ps/77.8.1139
10.1016/S0378-1135(97)81568-4
10.1080/03079451003604621
10.20506/rst.19.2.1228
10.1093/nar/gkm306
10.1177/1040638719844297
10.1080/03079457.2016.1248898
10.1128/JVI.79.5.2859-2868.2005
10.2307/1589779
10.1080/03079457.2014.977223
10.1046/j.1365-2567.2003.01643.x
10.1637/11525-110216-Reg.1
10.1292/jvms.10-0203
10.1016/j.mcp.2018.11.004
10.1080/03079457309353780
10.1292/jvms.15-0552
10.1186/s12985-017-0849-7
10.1016/j.jviromet.2011.03.028
ContentType Journal Article
Copyright 2023 by the Japanese Society of Veterinary Science
2023. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 The Japanese Society of Veterinary Science 2023
Copyright_xml – notice: 2023 by the Japanese Society of Veterinary Science
– notice: 2023. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 The Japanese Society of Veterinary Science 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7U9
8FD
FR3
H94
M7N
P64
7X8
5PM
DOI 10.1292/jvms.22-0482
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts
MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Veterinary Medicine
EISSN 1347-7439
EndPage 411
ExternalDocumentID PMC10139789
36792182
10_1292_jvms_22_0482
article_jvms_85_4_85_22_0482_article_char_en
Genre Journal Article
GroupedDBID 29L
2WC
53G
5GY
ACGFO
ACIWK
ACPRK
ADBBV
ADRAZ
AENEX
AFRAH
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B.T
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
HYE
JSF
JSH
KQ8
M48
M~E
N5S
OK1
P2P
RJT
RNS
RPM
RYR
RZJ
TKC
TR2
VH1
XSB
AAYXX
CITATION
OVT
PGMZT
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7U9
8FD
FR3
H94
M7N
P64
7X8
5PM
ID FETCH-LOGICAL-c562t-9979bb874e6847deb53612bdecaec3ef060561f2153a8900512ac67de497c363
IEDL.DBID M48
ISSN 0916-7250
1347-7439
IngestDate Thu Aug 21 18:37:52 EDT 2025
Fri Jul 11 09:19:52 EDT 2025
Sun Jun 29 12:17:27 EDT 2025
Thu Jan 02 22:53:04 EST 2025
Thu Apr 24 23:03:49 EDT 2025
Tue Jul 01 00:31:11 EDT 2025
Sun Jul 28 06:07:39 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords chicken
poultry
real-time PCR
infectious disease
pathogen detection system
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/)
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c562t-9979bb874e6847deb53612bdecaec3ef060561f2153a8900512ac67de497c363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1292/jvms.22-0482
PMID 36792182
PQID 2813492464
PQPubID 2028964
PageCount 5
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10139789
proquest_miscellaneous_2777406797
proquest_journals_2813492464
pubmed_primary_36792182
crossref_primary_10_1292_jvms_22_0482
crossref_citationtrail_10_1292_jvms_22_0482
jstage_primary_article_jvms_85_4_85_22_0482_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-00-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023-00-00
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo
PublicationTitle Journal of Veterinary Medical Science
PublicationTitleAlternate J. Vet. Med. Sci.
PublicationYear 2023
Publisher JAPANESE SOCIETY OF VETERINARY SCIENCE
Japan Science and Technology Agency
The Japanese Society of Veterinary Science
Publisher_xml – name: JAPANESE SOCIETY OF VETERINARY SCIENCE
– name: Japan Science and Technology Agency
– name: The Japanese Society of Veterinary Science
References 17. Rahpaya SS, Tsuchiaka S, Kishimoto M, Oba M, Katayama Y, Nunomura Y, Kokawa S, Kimura T, Kobayashi A, Kirino Y, Okabayashi T, Nonaka N, Mekata H, Aoki H, Shiokawa M, Umetsu M, Morita T, Hasebe A, Otsu K, Asai T, Yamaguchi T, Makino S, Murata Y, Abi AJ, Omatsu T, Mizutani T. 2018. Dembo polymerase chain reaction technique for detection of bovine abortion, diarrhea, and respiratory disease complex infectious agents in potential vectors and reservoirs. J Vet Sci 19: 350–357.
25. Techera C, Tomás G, Panzera Y, Banda A, Perbolianachis P, Pérez R, Marandino A. 2019. Development of real-time PCR assays for single and simultaneous detection of infectious bursal disease virus and chicken anemia virus. Mol Cell Probes 43: 58–63.
7. Ikezawa M, Goryo M, Sasaki J, Haridy M, Okada K. 2010. Late Marek’s disease in adult chickens inoculated with virulent Marek’s disease virus. J Vet Med Sci 72: 1539–1545.
30. Witter RL, Sharma JM, Solomon JJ, Champion LR. 1973. An age-related resistance of chickens to Marek’s disease: some preliminary observations. Avian Pathol 2: 43–54.
20. Sharma JM, Witter RL, Burmester BR. 1973. Pathogenesis of Marek’s disease in old chickens: lesion regression as the basis for age-related resistance. Infect Immun 8: 715–724.
8. Jayasundara JMKGK, Walkden-Brown SW, Katz ME, Islam AFMF, Renz KG, McNally J, Hunt PW. 2017. Pathogenicity, tissue distribution, shedding and environmental detection of two strains of IBDV following infection of chickens at 0 and 14 days of age. Avian Pathol 46: 242–255.
2. Clothier KA, Torain A, Reinl S. 2019. Surveillance for Avibacterium paragallinarum in autopsy cases of birds from small chicken flocks using a real-time PCR assay. J Vet Diagn Invest 31: 364–367.
12. Laamiri N, Aouini R, Marnissi B, Ghram A, Hmila I. 2018. A multiplex real-time RT-PCR for simultaneous detection of four most common avian respiratory viruses. Virology 515: 29–37.
14. Mase M, Tsukamoto K, Imai K, Yamaguchi S. 2004. Phylogenetic analysis of avian infectious bronchitis virus strains isolated in Japan. Arch Virol 149: 2069–2078.
21. Sprygin AV, Andreychuk DB, Kolotilov AN, Volkov MS, Runina IA, Mudrak NS, Borisov AV, Irza VN, Drygin VV, Perevozchikova NA. 2010. Development of a duplex real-time TaqMan PCR assay with an internal control for the detection of Mycoplasma gallisepticum and Mycoplasma synoviae in clinical samples from commercial and backyard poultry. Avian Pathol 39: 99–109.
28. Wernicki A, Nowaczek A, Urban-Chmiel R. 2017. Bacteriophage therapy to combat bacterial infections in poultry. Virol J 14: 179.
11. Kiss I, Matiz K, Kaszanyitzky E, Chávez Y, Johansson KE. 1997. Detection and identification of avian mycoplasmas by polymerase chain reaction and restriction fragment length polymorphism assay. Vet Microbiol 58: 23–30.
13. Markowski-Grimsrud CJ, Schat KA. 2003. Infection with chicken anaemia virus impairs the generation of pathogen-specific cytotoxic T lymphocytes. Immunology 109: 283–294.
29. Wernike K, Hoffmann B, Kalthoff D, König P, Beer M. 2011. Development and validation of a triplex real-time PCR assay for the rapid detection and differentiation of wild-type and glycoprotein E-deleted vaccine strains of Bovine herpesvirus type 1. J Virol Methods 174: 77–84.
15. Miller MM, Jarosinski KW, Schat KA. 2005. Positive and negative regulation of chicken anemia virus transcription. J Virol 79: 2859–2868.
19. Schat KA, Van Santen V. 2008. Chicken infectious anemia. pp. 211–235. In: Diseases of Poultry (Saif YM, Fadly AM, Glisson JR, McDougald LR, Nolan LK, Swayne DE eds.), Blackwell Publishing, Ames.
16. Norup LR, Jensen KH, Jørgensen E, Sørensen P, Juul-Madsen HR. 2008. Effect of mild heat stress and mild infection pressure on immune responses to an E. coli infection in chickens. Animal 2: 265–274.
31. Yuasa N, Noguchi T, Furuta K, Yoshida I. 1980. Maternal antibody and its effect on the susceptibility of chicks to chicken anemia agent. Avian Dis 24: 197–201.
9. Kennedy DA, Cairns C, Jones MJ, Bell AS, Salathé RM, Baigent SJ, Nair VK, Dunn PA, Read AF. 2017. Industry-wide surveillance of Marek’s disease virus on commercial poultry farms. Avian Dis 61: 153–164.
6. Ignjatović J, Sapats S. 2000. Avian infectious bronchitis virus. Rev Sci Tech 19: 493–508.
1. Baigent SJ, Nair VK, Le Galludec H. 2016. Real-time PCR for differential quantification of CVI988 vaccine virus and virulent strains of Marek’s disease virus. J Virol Methods 233: 23–36.
18. Rozins C, Day T, Greenhalgh S. 2019. Managing Marek’s disease in the egg industry. Epidemics 27: 52–58.
10. Kishimoto M, Tsuchiaka S, Rahpaya SS, Hasebe A, Otsu K, Sugimura S, Kobayashi S, Komatsu N, Nagai M, Omatsu T, Naoi Y, Sano K, Okazaki-Terashima S, Oba M, Katayama Y, Sato R, Asai T, Mizutani T. 2017. Development of a one-run real-time PCR detection system for pathogens associated with bovine respiratory disease complex. J Vet Med Sci 79: 517–523.
22. Stipkovits L, Kempf I. 1996. Mycoplasmoses in poultry. Rev Sci Tech 15: 1495–1525.
23. Sun F, Ferro PJ, Lupiani B, Kahl J, Morrow ME, Flanagan JP, Estevez C, Clavijo A. 2011. A duplex real-time polymerase chain reaction assay for the simultaneous detection of long terminal repeat regions and envelope protein gene sequences of Reticuloendotheliosis virus in avian blood samples. J Vet Diagn Invest 23: 937–941.
24. Sunaga F, Tsuchiaka S, Kishimoto M, Aoki H, Kakinoki M, Kure K, Okumura H, Okumura M, Okumura A, Nagai M, Omatsu T, Mizutani T. 2020. Development of a one-run real-time PCR detection system for pathogens associated with porcine respiratory diseases. J Vet Med Sci 82: 217–223.
4. Glisson JR. 1998. Bacterial respiratory disease of poultry. Poult Sci 77: 1139–1142.
27. Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JA. 2007. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35: W71-4.
26. Tsuchiaka S, Masuda T, Sugimura S, Kobayashi S, Komatsu N, Nagai M, Omatsu T, Furuya T, Oba M, Katayama Y, Kanda S, Yokoyama T, Mizutani T. 2016. Development of a novel detection system for microbes from bovine diarrhea by real-time PCR. J Vet Med Sci 78: 383–389.
3. Davidson I, Raibstein I, Altory A. 2015. Differential diagnosis of fowlpox and infectious laryngotracheitis viruses in chicken diphtheritic manifestations by mono and duplex real-time polymerase chain reaction. Avian Pathol 44: 1–4.
5. Guo M, Liu D, Chen X, Wu Y, Zhang X. 2022. Pathogenicity and innate response to Avibacterium paragallinarum in chickens. Poult Sci 101: 101523.
22
23
24
25
26
27
28
29
30
31
10
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: 20. Sharma JM, Witter RL, Burmester BR. 1973. Pathogenesis of Marek’s disease in old chickens: lesion regression as the basis for age-related resistance. Infect Immun 8: 715–724.
– reference: 2. Clothier KA, Torain A, Reinl S. 2019. Surveillance for Avibacterium paragallinarum in autopsy cases of birds from small chicken flocks using a real-time PCR assay. J Vet Diagn Invest 31: 364–367.
– reference: 5. Guo M, Liu D, Chen X, Wu Y, Zhang X. 2022. Pathogenicity and innate response to Avibacterium paragallinarum in chickens. Poult Sci 101: 101523.
– reference: 19. Schat KA, Van Santen V. 2008. Chicken infectious anemia. pp. 211–235. In: Diseases of Poultry (Saif YM, Fadly AM, Glisson JR, McDougald LR, Nolan LK, Swayne DE eds.), Blackwell Publishing, Ames.
– reference: 27. Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JA. 2007. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35: W71-4.
– reference: 24. Sunaga F, Tsuchiaka S, Kishimoto M, Aoki H, Kakinoki M, Kure K, Okumura H, Okumura M, Okumura A, Nagai M, Omatsu T, Mizutani T. 2020. Development of a one-run real-time PCR detection system for pathogens associated with porcine respiratory diseases. J Vet Med Sci 82: 217–223.
– reference: 18. Rozins C, Day T, Greenhalgh S. 2019. Managing Marek’s disease in the egg industry. Epidemics 27: 52–58.
– reference: 25. Techera C, Tomás G, Panzera Y, Banda A, Perbolianachis P, Pérez R, Marandino A. 2019. Development of real-time PCR assays for single and simultaneous detection of infectious bursal disease virus and chicken anemia virus. Mol Cell Probes 43: 58–63.
– reference: 15. Miller MM, Jarosinski KW, Schat KA. 2005. Positive and negative regulation of chicken anemia virus transcription. J Virol 79: 2859–2868.
– reference: 11. Kiss I, Matiz K, Kaszanyitzky E, Chávez Y, Johansson KE. 1997. Detection and identification of avian mycoplasmas by polymerase chain reaction and restriction fragment length polymorphism assay. Vet Microbiol 58: 23–30.
– reference: 17. Rahpaya SS, Tsuchiaka S, Kishimoto M, Oba M, Katayama Y, Nunomura Y, Kokawa S, Kimura T, Kobayashi A, Kirino Y, Okabayashi T, Nonaka N, Mekata H, Aoki H, Shiokawa M, Umetsu M, Morita T, Hasebe A, Otsu K, Asai T, Yamaguchi T, Makino S, Murata Y, Abi AJ, Omatsu T, Mizutani T. 2018. Dembo polymerase chain reaction technique for detection of bovine abortion, diarrhea, and respiratory disease complex infectious agents in potential vectors and reservoirs. J Vet Sci 19: 350–357.
– reference: 28. Wernicki A, Nowaczek A, Urban-Chmiel R. 2017. Bacteriophage therapy to combat bacterial infections in poultry. Virol J 14: 179.
– reference: 13. Markowski-Grimsrud CJ, Schat KA. 2003. Infection with chicken anaemia virus impairs the generation of pathogen-specific cytotoxic T lymphocytes. Immunology 109: 283–294.
– reference: 12. Laamiri N, Aouini R, Marnissi B, Ghram A, Hmila I. 2018. A multiplex real-time RT-PCR for simultaneous detection of four most common avian respiratory viruses. Virology 515: 29–37.
– reference: 9. Kennedy DA, Cairns C, Jones MJ, Bell AS, Salathé RM, Baigent SJ, Nair VK, Dunn PA, Read AF. 2017. Industry-wide surveillance of Marek’s disease virus on commercial poultry farms. Avian Dis 61: 153–164.
– reference: 16. Norup LR, Jensen KH, Jørgensen E, Sørensen P, Juul-Madsen HR. 2008. Effect of mild heat stress and mild infection pressure on immune responses to an E. coli infection in chickens. Animal 2: 265–274.
– reference: 22. Stipkovits L, Kempf I. 1996. Mycoplasmoses in poultry. Rev Sci Tech 15: 1495–1525.
– reference: 8. Jayasundara JMKGK, Walkden-Brown SW, Katz ME, Islam AFMF, Renz KG, McNally J, Hunt PW. 2017. Pathogenicity, tissue distribution, shedding and environmental detection of two strains of IBDV following infection of chickens at 0 and 14 days of age. Avian Pathol 46: 242–255.
– reference: 14. Mase M, Tsukamoto K, Imai K, Yamaguchi S. 2004. Phylogenetic analysis of avian infectious bronchitis virus strains isolated in Japan. Arch Virol 149: 2069–2078.
– reference: 4. Glisson JR. 1998. Bacterial respiratory disease of poultry. Poult Sci 77: 1139–1142.
– reference: 21. Sprygin AV, Andreychuk DB, Kolotilov AN, Volkov MS, Runina IA, Mudrak NS, Borisov AV, Irza VN, Drygin VV, Perevozchikova NA. 2010. Development of a duplex real-time TaqMan PCR assay with an internal control for the detection of Mycoplasma gallisepticum and Mycoplasma synoviae in clinical samples from commercial and backyard poultry. Avian Pathol 39: 99–109.
– reference: 29. Wernike K, Hoffmann B, Kalthoff D, König P, Beer M. 2011. Development and validation of a triplex real-time PCR assay for the rapid detection and differentiation of wild-type and glycoprotein E-deleted vaccine strains of Bovine herpesvirus type 1. J Virol Methods 174: 77–84.
– reference: 31. Yuasa N, Noguchi T, Furuta K, Yoshida I. 1980. Maternal antibody and its effect on the susceptibility of chicks to chicken anemia agent. Avian Dis 24: 197–201.
– reference: 6. Ignjatović J, Sapats S. 2000. Avian infectious bronchitis virus. Rev Sci Tech 19: 493–508.
– reference: 10. Kishimoto M, Tsuchiaka S, Rahpaya SS, Hasebe A, Otsu K, Sugimura S, Kobayashi S, Komatsu N, Nagai M, Omatsu T, Naoi Y, Sano K, Okazaki-Terashima S, Oba M, Katayama Y, Sato R, Asai T, Mizutani T. 2017. Development of a one-run real-time PCR detection system for pathogens associated with bovine respiratory disease complex. J Vet Med Sci 79: 517–523.
– reference: 23. Sun F, Ferro PJ, Lupiani B, Kahl J, Morrow ME, Flanagan JP, Estevez C, Clavijo A. 2011. A duplex real-time polymerase chain reaction assay for the simultaneous detection of long terminal repeat regions and envelope protein gene sequences of Reticuloendotheliosis virus in avian blood samples. J Vet Diagn Invest 23: 937–941.
– reference: 7. Ikezawa M, Goryo M, Sasaki J, Haridy M, Okada K. 2010. Late Marek’s disease in adult chickens inoculated with virulent Marek’s disease virus. J Vet Med Sci 72: 1539–1545.
– reference: 26. Tsuchiaka S, Masuda T, Sugimura S, Kobayashi S, Komatsu N, Nagai M, Omatsu T, Furuya T, Oba M, Katayama Y, Kanda S, Yokoyama T, Mizutani T. 2016. Development of a novel detection system for microbes from bovine diarrhea by real-time PCR. J Vet Med Sci 78: 383–389.
– reference: 30. Witter RL, Sharma JM, Solomon JJ, Champion LR. 1973. An age-related resistance of chickens to Marek’s disease: some preliminary observations. Avian Pathol 2: 43–54.
– reference: 1. Baigent SJ, Nair VK, Le Galludec H. 2016. Real-time PCR for differential quantification of CVI988 vaccine virus and virulent strains of Marek’s disease virus. J Virol Methods 233: 23–36.
– reference: 3. Davidson I, Raibstein I, Altory A. 2015. Differential diagnosis of fowlpox and infectious laryngotracheitis viruses in chicken diphtheritic manifestations by mono and duplex real-time polymerase chain reaction. Avian Pathol 44: 1–4.
– ident: 10
  doi: 10.1292/jvms.16-0489
– ident: 23
  doi: 10.1177/1040638711416631
– ident: 12
  doi: 10.1016/j.virol.2017.11.021
– ident: 5
  doi: 10.1016/j.psj.2021.101523
– ident: 20
  doi: 10.1128/iai.8.5.715-724.1973
– ident: 22
  doi: 10.20506/rst.15.4.986
– ident: 18
  doi: 10.1016/j.epidem.2019.01.004
– ident: 17
  doi: 10.4142/jvs.2018.19.3.350
– ident: 24
  doi: 10.1292/jvms.19-0063
– ident: 14
  doi: 10.1007/s00705-004-0369-9
– ident: 16
  doi: 10.1017/S1751731107001097
– ident: 1
  doi: 10.1016/j.jviromet.2016.03.002
– ident: 4
  doi: 10.1093/ps/77.8.1139
– ident: 11
  doi: 10.1016/S0378-1135(97)81568-4
– ident: 21
  doi: 10.1080/03079451003604621
– ident: 6
  doi: 10.20506/rst.19.2.1228
– ident: 27
  doi: 10.1093/nar/gkm306
– ident: 2
  doi: 10.1177/1040638719844297
– ident: 8
  doi: 10.1080/03079457.2016.1248898
– ident: 15
  doi: 10.1128/JVI.79.5.2859-2868.2005
– ident: 31
  doi: 10.2307/1589779
– ident: 3
  doi: 10.1080/03079457.2014.977223
– ident: 19
– ident: 13
  doi: 10.1046/j.1365-2567.2003.01643.x
– ident: 9
  doi: 10.1637/11525-110216-Reg.1
– ident: 7
  doi: 10.1292/jvms.10-0203
– ident: 25
  doi: 10.1016/j.mcp.2018.11.004
– ident: 30
  doi: 10.1080/03079457309353780
– ident: 26
  doi: 10.1292/jvms.15-0552
– ident: 28
  doi: 10.1186/s12985-017-0849-7
– ident: 29
  doi: 10.1016/j.jviromet.2011.03.028
SSID ssj0021469
Score 2.3473098
Snippet Infectious diseases are an important issue in the poultry industry, requiring early diagnosis and countermeasures. To address this, we present a system based...
Infectious diseases are an important issue in the poultry industry, requiring early diagnosis and countermeasures. To address this, we present a system based...
SourceID pubmedcentral
proquest
pubmed
crossref
jstage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 407
SubjectTerms Animals
Avian Pathology
chicken
Chickens - microbiology
Communicable Diseases - veterinary
DNA viruses
Female
Genomes
infectious disease
Infectious diseases
pathogen detection system
Pathogens
Polymerase chain reaction
Poultry
Poultry Diseases
real-time PCR
Real-Time Polymerase Chain Reaction - veterinary
RNA Viruses
Title Development of a one-run real-time PCR detection system for pathogens associated with poultry infectious diseases
URI https://www.jstage.jst.go.jp/article/jvms/85/4/85_22-0482/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/36792182
https://www.proquest.com/docview/2813492464
https://www.proquest.com/docview/2777406797
https://pubmed.ncbi.nlm.nih.gov/PMC10139789
Volume 85
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Veterinary Medical Science, 2023, Vol.85(4), pp.407-411
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3dTxQxEJ8QJIYXI-DHKpCa6JNZPNtuu40hxBAJaI4YA4a3ptvtquTcg9s7o_-9M7vdDUfgZV86-5HOzM5v2ulvAF5XmZdB-JCKUo5SqcmlcuLGw1BZjBQvVcvANz5Vx-fy80V2sQJ9t9E4gc2dqR31kzqfTfb-Xv87QIffb7kRDH93-ed3s4c5FRoj_owfYEzS1MtgLIf9BOpebWLZ--071uGhUNoQk_lSbFq7RHj2I9yFPG8XUN6ISEeP4VGEkuxjp_sNWAn1Jmx-p_qW9pAtG8d98y24vlEbxKYVc2xah3S2qBlixklKDebZ18NvrAzztjSrZh3DM0NIy6hp8RTtrGEu6jKUjNZv2RU1pcYX9RVdi4bFDZ_mCZwdfTo7PE5js4XUIwSap8ZoUxS5lkFhwCpDkQkEP0UZvAtehGqkKNeoECEIlxvyZe68QkFptBdKPIXVGj_9OTCHEJN7nclCEV-acNWoQhSgS-OMqrI8gbf9LFsficipH8bEUkKC6rGkHsu5JfUk8GaQvuoIOO6R-9ApbJCKrtdJ5ZmVdInSwyCdbcMfRALbvZZtb4OW5y13o1QygVfDMLof7am4OuCsWq4RP9NinE7gWWcUwwf0ZpVAvmQugwBRey-P1L9-thTf71tknpsX9z70JaxzxFvdatA2rM5ni7CD-Ghe7GJmcPJlt3WA_89BEx8
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+one-run+real-time+PCR+detection+system+for+pathogens+associated+with+poultry+infectious+diseases&rft.jtitle=Journal+of+veterinary+medical+science&rft.au=Shibanuma%2C+Takuya&rft.au=Nunomura%2C+Yuka&rft.au=Oba%2C+Mami&rft.au=Kawahara%2C+Fumiya&rft.date=2023&rft.eissn=1347-7439&rft.volume=85&rft.issue=4&rft.spage=407&rft_id=info:doi/10.1292%2Fjvms.22-0482&rft_id=info%3Apmid%2F36792182&rft.externalDocID=36792182
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-7250&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-7250&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-7250&client=summon