Development of a one-run real-time PCR detection system for pathogens associated with poultry infectious diseases
Infectious diseases are an important issue in the poultry industry, requiring early diagnosis and countermeasures. To address this, we present a system based on TaqMan real-time PCR to detect pathogen genome in specimens collected from chickens. We designed 12 primer–probe sets for pathogens causing...
Saved in:
Published in | Journal of Veterinary Medical Science Vol. 85; no. 4; pp. 407 - 411 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Japan
JAPANESE SOCIETY OF VETERINARY SCIENCE
2023
Japan Science and Technology Agency The Japanese Society of Veterinary Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Infectious diseases are an important issue in the poultry industry, requiring early diagnosis and countermeasures. To address this, we present a system based on TaqMan real-time PCR to detect pathogen genome in specimens collected from chickens. We designed 12 primer–probe sets for pathogens causing respiratory or systemic symptoms. In field samples, we detected three viruses, including DNA and RNA viruses, and three bacteria. The chicken anemia virus and Avibacterium paragallinarum were detected only in young and laying hens, respectively. Bacteria were detected only in throat swabs, and gallid alphaherpesvirus 2 was detected in different specimens at each developmental stage. Our novel TaqMan real-time PCR system effectively detects pathogen’s gene in chickens, while taking age into account. |
---|---|
AbstractList | Infectious diseases are an important issue in the poultry industry, requiring early diagnosis and countermeasures. To address this, we present a system based on TaqMan real-time PCR to detect pathogen genome in specimens collected from chickens. We designed 12 primer–probe sets for pathogens causing respiratory or systemic symptoms. In field samples, we detected three viruses, including DNA and RNA viruses, and three bacteria. The chicken anemia virus and Avibacterium paragallinarum were detected only in young and laying hens, respectively. Bacteria were detected only in throat swabs, and gallid alphaherpesvirus 2 was detected in different specimens at each developmental stage. Our novel TaqMan real-time PCR system effectively detects pathogen’s gene in chickens, while taking age into account. Infectious diseases are an important issue in the poultry industry, requiring early diagnosis and countermeasures. To address this, we present a system based on TaqMan real-time PCR to detect pathogen genome in specimens collected from chickens. We designed 12 primer-probe sets for pathogens causing respiratory or systemic symptoms. In field samples, we detected three viruses, including DNA and RNA viruses, and three bacteria. The chicken anemia virus and Avibacterium paragallinarum were detected only in young and laying hens, respectively. Bacteria were detected only in throat swabs, and gallid alphaherpesvirus 2 was detected in different specimens at each developmental stage. Our novel TaqMan real-time PCR system effectively detects pathogen's gene in chickens, while taking age into account.Infectious diseases are an important issue in the poultry industry, requiring early diagnosis and countermeasures. To address this, we present a system based on TaqMan real-time PCR to detect pathogen genome in specimens collected from chickens. We designed 12 primer-probe sets for pathogens causing respiratory or systemic symptoms. In field samples, we detected three viruses, including DNA and RNA viruses, and three bacteria. The chicken anemia virus and Avibacterium paragallinarum were detected only in young and laying hens, respectively. Bacteria were detected only in throat swabs, and gallid alphaherpesvirus 2 was detected in different specimens at each developmental stage. Our novel TaqMan real-time PCR system effectively detects pathogen's gene in chickens, while taking age into account. Infectious diseases are an important issue in the poultry industry, requiring early diagnosis and countermeasures. To address this, we present a system based on TaqMan real-time PCR to detect pathogen genome in specimens collected from chickens. We designed 12 primer–probe sets for pathogens causing respiratory or systemic symptoms. In field samples, we detected three viruses, including DNA and RNA viruses, and three bacteria. The chicken anemia virus and Avibacterium paragallinarum were detected only in young and laying hens, respectively. Bacteria were detected only in throat swabs, and gallid alphaherpesvirus 2 was detected in different specimens at each developmental stage. Our novel TaqMan real-time PCR system effectively detects pathogen’s gene in chickens, while taking age into account. |
ArticleNumber | 22-0482 |
Author | KAWAHARA, Fumiya NUNOMURA, Yuka MIZUTANI, Tetsuya TAKEMAE, Hitoshi SHIBANUMA, Takuya OBA, Mami |
Author_xml | – sequence: 1 fullname: SHIBANUMA, Takuya organization: Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo, Japan – sequence: 2 fullname: NUNOMURA, Yuka organization: Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo, Japan – sequence: 3 fullname: OBA, Mami organization: Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo, Japan – sequence: 4 fullname: KAWAHARA, Fumiya organization: Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo, Japan – sequence: 5 fullname: MIZUTANI, Tetsuya organization: Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo, Japan – sequence: 6 fullname: TAKEMAE, Hitoshi organization: Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36792182$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc-PEyEcxYlZ43ZXb54NiRcPzgoMA8PJaP2ZbKIxeyeU-U5LMwNdYGr638vY2ugmXuDw_bzH9_Gu0IUPHhB6TskNZYq92e7HdMNYRXjLHqEFrbmsJK_VBVoQRUUlWUMu0VVKW0IY5UI9QZe1kIrRli3Q_QfYwxB2I_iMQ48NLu5VnDyOYIYquxHw9-UP3EEGm13wOB1ShhH3IeKdyZuwBp-wSSlYZzJ0-KfLG7wL05DjATvf_5ZNCXcugUmQnqLHvRkSPDvd1-ju08e75Zfq9tvnr8t3t5VtBMuVUlKtVq3kIFouO1g1taBs1YE1YGvoiSCNoD2jTW1aRUhDmbGigFxJW4v6Gr092u6m1QidLfmiGfQuutHEgw7G6X8n3m30Ouw1JbRWslXF4dXJIYb7CVLWo0sWhsF4KIE0k1JyUn5SFvTlA3QbpuhLPM3a0ohiXPBCvfh7pfMuf9oowOsjYGNIKUJ_RijRc9l6LlszpueyC84e4NZlM5dUArnhf6L3R9E2ZbOG8wsmZmcHOMJto_l8nETnod2YqMHXvwAU8Mfo |
CitedBy_id | crossref_primary_10_1080_00439339_2024_2416682 crossref_primary_10_3390_app14125031 |
Cites_doi | 10.1292/jvms.16-0489 10.1177/1040638711416631 10.1016/j.virol.2017.11.021 10.1016/j.psj.2021.101523 10.1128/iai.8.5.715-724.1973 10.20506/rst.15.4.986 10.1016/j.epidem.2019.01.004 10.4142/jvs.2018.19.3.350 10.1292/jvms.19-0063 10.1007/s00705-004-0369-9 10.1017/S1751731107001097 10.1016/j.jviromet.2016.03.002 10.1093/ps/77.8.1139 10.1016/S0378-1135(97)81568-4 10.1080/03079451003604621 10.20506/rst.19.2.1228 10.1093/nar/gkm306 10.1177/1040638719844297 10.1080/03079457.2016.1248898 10.1128/JVI.79.5.2859-2868.2005 10.2307/1589779 10.1080/03079457.2014.977223 10.1046/j.1365-2567.2003.01643.x 10.1637/11525-110216-Reg.1 10.1292/jvms.10-0203 10.1016/j.mcp.2018.11.004 10.1080/03079457309353780 10.1292/jvms.15-0552 10.1186/s12985-017-0849-7 10.1016/j.jviromet.2011.03.028 |
ContentType | Journal Article |
Copyright | 2023 by the Japanese Society of Veterinary Science 2023. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 The Japanese Society of Veterinary Science 2023 |
Copyright_xml | – notice: 2023 by the Japanese Society of Veterinary Science – notice: 2023. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 The Japanese Society of Veterinary Science 2023 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7U9 8FD FR3 H94 M7N P64 7X8 5PM |
DOI | 10.1292/jvms.22-0482 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Veterinary Medicine |
EISSN | 1347-7439 |
EndPage | 411 |
ExternalDocumentID | PMC10139789 36792182 10_1292_jvms_22_0482 article_jvms_85_4_85_22_0482_article_char_en |
Genre | Journal Article |
GroupedDBID | 29L 2WC 53G 5GY ACGFO ACIWK ACPRK ADBBV ADRAZ AENEX AFRAH AI. ALMA_UNASSIGNED_HOLDINGS AOIJS B.T BAWUL CS3 DIK DU5 E3Z EBS EJD HYE JSF JSH KQ8 M48 M~E N5S OK1 P2P RJT RNS RPM RYR RZJ TKC TR2 VH1 XSB AAYXX CITATION OVT PGMZT CGR CUY CVF ECM EIF NPM 7QR 7U9 8FD FR3 H94 M7N P64 7X8 5PM |
ID | FETCH-LOGICAL-c562t-9979bb874e6847deb53612bdecaec3ef060561f2153a8900512ac67de497c363 |
IEDL.DBID | M48 |
ISSN | 0916-7250 1347-7439 |
IngestDate | Thu Aug 21 18:37:52 EDT 2025 Fri Jul 11 09:19:52 EDT 2025 Sun Jun 29 12:17:27 EDT 2025 Thu Jan 02 22:53:04 EST 2025 Thu Apr 24 23:03:49 EDT 2025 Tue Jul 01 00:31:11 EDT 2025 Sun Jul 28 06:07:39 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | chicken poultry real-time PCR infectious disease pathogen detection system |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/) |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c562t-9979bb874e6847deb53612bdecaec3ef060561f2153a8900512ac67de497c363 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1292/jvms.22-0482 |
PMID | 36792182 |
PQID | 2813492464 |
PQPubID | 2028964 |
PageCount | 5 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10139789 proquest_miscellaneous_2777406797 proquest_journals_2813492464 pubmed_primary_36792182 crossref_primary_10_1292_jvms_22_0482 crossref_citationtrail_10_1292_jvms_22_0482 jstage_primary_article_jvms_85_4_85_22_0482_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-00-00 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – year: 2023 text: 2023-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Tokyo |
PublicationTitle | Journal of Veterinary Medical Science |
PublicationTitleAlternate | J. Vet. Med. Sci. |
PublicationYear | 2023 |
Publisher | JAPANESE SOCIETY OF VETERINARY SCIENCE Japan Science and Technology Agency The Japanese Society of Veterinary Science |
Publisher_xml | – name: JAPANESE SOCIETY OF VETERINARY SCIENCE – name: Japan Science and Technology Agency – name: The Japanese Society of Veterinary Science |
References | 17. Rahpaya SS, Tsuchiaka S, Kishimoto M, Oba M, Katayama Y, Nunomura Y, Kokawa S, Kimura T, Kobayashi A, Kirino Y, Okabayashi T, Nonaka N, Mekata H, Aoki H, Shiokawa M, Umetsu M, Morita T, Hasebe A, Otsu K, Asai T, Yamaguchi T, Makino S, Murata Y, Abi AJ, Omatsu T, Mizutani T. 2018. Dembo polymerase chain reaction technique for detection of bovine abortion, diarrhea, and respiratory disease complex infectious agents in potential vectors and reservoirs. J Vet Sci 19: 350–357. 25. Techera C, Tomás G, Panzera Y, Banda A, Perbolianachis P, Pérez R, Marandino A. 2019. Development of real-time PCR assays for single and simultaneous detection of infectious bursal disease virus and chicken anemia virus. Mol Cell Probes 43: 58–63. 7. Ikezawa M, Goryo M, Sasaki J, Haridy M, Okada K. 2010. Late Marek’s disease in adult chickens inoculated with virulent Marek’s disease virus. J Vet Med Sci 72: 1539–1545. 30. Witter RL, Sharma JM, Solomon JJ, Champion LR. 1973. An age-related resistance of chickens to Marek’s disease: some preliminary observations. Avian Pathol 2: 43–54. 20. Sharma JM, Witter RL, Burmester BR. 1973. Pathogenesis of Marek’s disease in old chickens: lesion regression as the basis for age-related resistance. Infect Immun 8: 715–724. 8. Jayasundara JMKGK, Walkden-Brown SW, Katz ME, Islam AFMF, Renz KG, McNally J, Hunt PW. 2017. Pathogenicity, tissue distribution, shedding and environmental detection of two strains of IBDV following infection of chickens at 0 and 14 days of age. Avian Pathol 46: 242–255. 2. Clothier KA, Torain A, Reinl S. 2019. Surveillance for Avibacterium paragallinarum in autopsy cases of birds from small chicken flocks using a real-time PCR assay. J Vet Diagn Invest 31: 364–367. 12. Laamiri N, Aouini R, Marnissi B, Ghram A, Hmila I. 2018. A multiplex real-time RT-PCR for simultaneous detection of four most common avian respiratory viruses. Virology 515: 29–37. 14. Mase M, Tsukamoto K, Imai K, Yamaguchi S. 2004. Phylogenetic analysis of avian infectious bronchitis virus strains isolated in Japan. Arch Virol 149: 2069–2078. 21. Sprygin AV, Andreychuk DB, Kolotilov AN, Volkov MS, Runina IA, Mudrak NS, Borisov AV, Irza VN, Drygin VV, Perevozchikova NA. 2010. Development of a duplex real-time TaqMan PCR assay with an internal control for the detection of Mycoplasma gallisepticum and Mycoplasma synoviae in clinical samples from commercial and backyard poultry. Avian Pathol 39: 99–109. 28. Wernicki A, Nowaczek A, Urban-Chmiel R. 2017. Bacteriophage therapy to combat bacterial infections in poultry. Virol J 14: 179. 11. Kiss I, Matiz K, Kaszanyitzky E, Chávez Y, Johansson KE. 1997. Detection and identification of avian mycoplasmas by polymerase chain reaction and restriction fragment length polymorphism assay. Vet Microbiol 58: 23–30. 13. Markowski-Grimsrud CJ, Schat KA. 2003. Infection with chicken anaemia virus impairs the generation of pathogen-specific cytotoxic T lymphocytes. Immunology 109: 283–294. 29. Wernike K, Hoffmann B, Kalthoff D, König P, Beer M. 2011. Development and validation of a triplex real-time PCR assay for the rapid detection and differentiation of wild-type and glycoprotein E-deleted vaccine strains of Bovine herpesvirus type 1. J Virol Methods 174: 77–84. 15. Miller MM, Jarosinski KW, Schat KA. 2005. Positive and negative regulation of chicken anemia virus transcription. J Virol 79: 2859–2868. 19. Schat KA, Van Santen V. 2008. Chicken infectious anemia. pp. 211–235. In: Diseases of Poultry (Saif YM, Fadly AM, Glisson JR, McDougald LR, Nolan LK, Swayne DE eds.), Blackwell Publishing, Ames. 16. Norup LR, Jensen KH, Jørgensen E, Sørensen P, Juul-Madsen HR. 2008. Effect of mild heat stress and mild infection pressure on immune responses to an E. coli infection in chickens. Animal 2: 265–274. 31. Yuasa N, Noguchi T, Furuta K, Yoshida I. 1980. Maternal antibody and its effect on the susceptibility of chicks to chicken anemia agent. Avian Dis 24: 197–201. 9. Kennedy DA, Cairns C, Jones MJ, Bell AS, Salathé RM, Baigent SJ, Nair VK, Dunn PA, Read AF. 2017. Industry-wide surveillance of Marek’s disease virus on commercial poultry farms. Avian Dis 61: 153–164. 6. Ignjatović J, Sapats S. 2000. Avian infectious bronchitis virus. Rev Sci Tech 19: 493–508. 1. Baigent SJ, Nair VK, Le Galludec H. 2016. Real-time PCR for differential quantification of CVI988 vaccine virus and virulent strains of Marek’s disease virus. J Virol Methods 233: 23–36. 18. Rozins C, Day T, Greenhalgh S. 2019. Managing Marek’s disease in the egg industry. Epidemics 27: 52–58. 10. Kishimoto M, Tsuchiaka S, Rahpaya SS, Hasebe A, Otsu K, Sugimura S, Kobayashi S, Komatsu N, Nagai M, Omatsu T, Naoi Y, Sano K, Okazaki-Terashima S, Oba M, Katayama Y, Sato R, Asai T, Mizutani T. 2017. Development of a one-run real-time PCR detection system for pathogens associated with bovine respiratory disease complex. J Vet Med Sci 79: 517–523. 22. Stipkovits L, Kempf I. 1996. Mycoplasmoses in poultry. Rev Sci Tech 15: 1495–1525. 23. Sun F, Ferro PJ, Lupiani B, Kahl J, Morrow ME, Flanagan JP, Estevez C, Clavijo A. 2011. A duplex real-time polymerase chain reaction assay for the simultaneous detection of long terminal repeat regions and envelope protein gene sequences of Reticuloendotheliosis virus in avian blood samples. J Vet Diagn Invest 23: 937–941. 24. Sunaga F, Tsuchiaka S, Kishimoto M, Aoki H, Kakinoki M, Kure K, Okumura H, Okumura M, Okumura A, Nagai M, Omatsu T, Mizutani T. 2020. Development of a one-run real-time PCR detection system for pathogens associated with porcine respiratory diseases. J Vet Med Sci 82: 217–223. 4. Glisson JR. 1998. Bacterial respiratory disease of poultry. Poult Sci 77: 1139–1142. 27. Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JA. 2007. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35: W71-4. 26. Tsuchiaka S, Masuda T, Sugimura S, Kobayashi S, Komatsu N, Nagai M, Omatsu T, Furuya T, Oba M, Katayama Y, Kanda S, Yokoyama T, Mizutani T. 2016. Development of a novel detection system for microbes from bovine diarrhea by real-time PCR. J Vet Med Sci 78: 383–389. 3. Davidson I, Raibstein I, Altory A. 2015. Differential diagnosis of fowlpox and infectious laryngotracheitis viruses in chicken diphtheritic manifestations by mono and duplex real-time polymerase chain reaction. Avian Pathol 44: 1–4. 5. Guo M, Liu D, Chen X, Wu Y, Zhang X. 2022. Pathogenicity and innate response to Avibacterium paragallinarum in chickens. Poult Sci 101: 101523. 22 23 24 25 26 27 28 29 30 31 10 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – reference: 20. Sharma JM, Witter RL, Burmester BR. 1973. Pathogenesis of Marek’s disease in old chickens: lesion regression as the basis for age-related resistance. Infect Immun 8: 715–724. – reference: 2. Clothier KA, Torain A, Reinl S. 2019. Surveillance for Avibacterium paragallinarum in autopsy cases of birds from small chicken flocks using a real-time PCR assay. J Vet Diagn Invest 31: 364–367. – reference: 5. Guo M, Liu D, Chen X, Wu Y, Zhang X. 2022. Pathogenicity and innate response to Avibacterium paragallinarum in chickens. Poult Sci 101: 101523. – reference: 19. Schat KA, Van Santen V. 2008. Chicken infectious anemia. pp. 211–235. In: Diseases of Poultry (Saif YM, Fadly AM, Glisson JR, McDougald LR, Nolan LK, Swayne DE eds.), Blackwell Publishing, Ames. – reference: 27. Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JA. 2007. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35: W71-4. – reference: 24. Sunaga F, Tsuchiaka S, Kishimoto M, Aoki H, Kakinoki M, Kure K, Okumura H, Okumura M, Okumura A, Nagai M, Omatsu T, Mizutani T. 2020. Development of a one-run real-time PCR detection system for pathogens associated with porcine respiratory diseases. J Vet Med Sci 82: 217–223. – reference: 18. Rozins C, Day T, Greenhalgh S. 2019. Managing Marek’s disease in the egg industry. Epidemics 27: 52–58. – reference: 25. Techera C, Tomás G, Panzera Y, Banda A, Perbolianachis P, Pérez R, Marandino A. 2019. Development of real-time PCR assays for single and simultaneous detection of infectious bursal disease virus and chicken anemia virus. Mol Cell Probes 43: 58–63. – reference: 15. Miller MM, Jarosinski KW, Schat KA. 2005. Positive and negative regulation of chicken anemia virus transcription. J Virol 79: 2859–2868. – reference: 11. Kiss I, Matiz K, Kaszanyitzky E, Chávez Y, Johansson KE. 1997. Detection and identification of avian mycoplasmas by polymerase chain reaction and restriction fragment length polymorphism assay. Vet Microbiol 58: 23–30. – reference: 17. Rahpaya SS, Tsuchiaka S, Kishimoto M, Oba M, Katayama Y, Nunomura Y, Kokawa S, Kimura T, Kobayashi A, Kirino Y, Okabayashi T, Nonaka N, Mekata H, Aoki H, Shiokawa M, Umetsu M, Morita T, Hasebe A, Otsu K, Asai T, Yamaguchi T, Makino S, Murata Y, Abi AJ, Omatsu T, Mizutani T. 2018. Dembo polymerase chain reaction technique for detection of bovine abortion, diarrhea, and respiratory disease complex infectious agents in potential vectors and reservoirs. J Vet Sci 19: 350–357. – reference: 28. Wernicki A, Nowaczek A, Urban-Chmiel R. 2017. Bacteriophage therapy to combat bacterial infections in poultry. Virol J 14: 179. – reference: 13. Markowski-Grimsrud CJ, Schat KA. 2003. Infection with chicken anaemia virus impairs the generation of pathogen-specific cytotoxic T lymphocytes. Immunology 109: 283–294. – reference: 12. Laamiri N, Aouini R, Marnissi B, Ghram A, Hmila I. 2018. A multiplex real-time RT-PCR for simultaneous detection of four most common avian respiratory viruses. Virology 515: 29–37. – reference: 9. Kennedy DA, Cairns C, Jones MJ, Bell AS, Salathé RM, Baigent SJ, Nair VK, Dunn PA, Read AF. 2017. Industry-wide surveillance of Marek’s disease virus on commercial poultry farms. Avian Dis 61: 153–164. – reference: 16. Norup LR, Jensen KH, Jørgensen E, Sørensen P, Juul-Madsen HR. 2008. Effect of mild heat stress and mild infection pressure on immune responses to an E. coli infection in chickens. Animal 2: 265–274. – reference: 22. Stipkovits L, Kempf I. 1996. Mycoplasmoses in poultry. Rev Sci Tech 15: 1495–1525. – reference: 8. Jayasundara JMKGK, Walkden-Brown SW, Katz ME, Islam AFMF, Renz KG, McNally J, Hunt PW. 2017. Pathogenicity, tissue distribution, shedding and environmental detection of two strains of IBDV following infection of chickens at 0 and 14 days of age. Avian Pathol 46: 242–255. – reference: 14. Mase M, Tsukamoto K, Imai K, Yamaguchi S. 2004. Phylogenetic analysis of avian infectious bronchitis virus strains isolated in Japan. Arch Virol 149: 2069–2078. – reference: 4. Glisson JR. 1998. Bacterial respiratory disease of poultry. Poult Sci 77: 1139–1142. – reference: 21. Sprygin AV, Andreychuk DB, Kolotilov AN, Volkov MS, Runina IA, Mudrak NS, Borisov AV, Irza VN, Drygin VV, Perevozchikova NA. 2010. Development of a duplex real-time TaqMan PCR assay with an internal control for the detection of Mycoplasma gallisepticum and Mycoplasma synoviae in clinical samples from commercial and backyard poultry. Avian Pathol 39: 99–109. – reference: 29. Wernike K, Hoffmann B, Kalthoff D, König P, Beer M. 2011. Development and validation of a triplex real-time PCR assay for the rapid detection and differentiation of wild-type and glycoprotein E-deleted vaccine strains of Bovine herpesvirus type 1. J Virol Methods 174: 77–84. – reference: 31. Yuasa N, Noguchi T, Furuta K, Yoshida I. 1980. Maternal antibody and its effect on the susceptibility of chicks to chicken anemia agent. Avian Dis 24: 197–201. – reference: 6. Ignjatović J, Sapats S. 2000. Avian infectious bronchitis virus. Rev Sci Tech 19: 493–508. – reference: 10. Kishimoto M, Tsuchiaka S, Rahpaya SS, Hasebe A, Otsu K, Sugimura S, Kobayashi S, Komatsu N, Nagai M, Omatsu T, Naoi Y, Sano K, Okazaki-Terashima S, Oba M, Katayama Y, Sato R, Asai T, Mizutani T. 2017. Development of a one-run real-time PCR detection system for pathogens associated with bovine respiratory disease complex. J Vet Med Sci 79: 517–523. – reference: 23. Sun F, Ferro PJ, Lupiani B, Kahl J, Morrow ME, Flanagan JP, Estevez C, Clavijo A. 2011. A duplex real-time polymerase chain reaction assay for the simultaneous detection of long terminal repeat regions and envelope protein gene sequences of Reticuloendotheliosis virus in avian blood samples. J Vet Diagn Invest 23: 937–941. – reference: 7. Ikezawa M, Goryo M, Sasaki J, Haridy M, Okada K. 2010. Late Marek’s disease in adult chickens inoculated with virulent Marek’s disease virus. J Vet Med Sci 72: 1539–1545. – reference: 26. Tsuchiaka S, Masuda T, Sugimura S, Kobayashi S, Komatsu N, Nagai M, Omatsu T, Furuya T, Oba M, Katayama Y, Kanda S, Yokoyama T, Mizutani T. 2016. Development of a novel detection system for microbes from bovine diarrhea by real-time PCR. J Vet Med Sci 78: 383–389. – reference: 30. Witter RL, Sharma JM, Solomon JJ, Champion LR. 1973. An age-related resistance of chickens to Marek’s disease: some preliminary observations. Avian Pathol 2: 43–54. – reference: 1. Baigent SJ, Nair VK, Le Galludec H. 2016. Real-time PCR for differential quantification of CVI988 vaccine virus and virulent strains of Marek’s disease virus. J Virol Methods 233: 23–36. – reference: 3. Davidson I, Raibstein I, Altory A. 2015. Differential diagnosis of fowlpox and infectious laryngotracheitis viruses in chicken diphtheritic manifestations by mono and duplex real-time polymerase chain reaction. Avian Pathol 44: 1–4. – ident: 10 doi: 10.1292/jvms.16-0489 – ident: 23 doi: 10.1177/1040638711416631 – ident: 12 doi: 10.1016/j.virol.2017.11.021 – ident: 5 doi: 10.1016/j.psj.2021.101523 – ident: 20 doi: 10.1128/iai.8.5.715-724.1973 – ident: 22 doi: 10.20506/rst.15.4.986 – ident: 18 doi: 10.1016/j.epidem.2019.01.004 – ident: 17 doi: 10.4142/jvs.2018.19.3.350 – ident: 24 doi: 10.1292/jvms.19-0063 – ident: 14 doi: 10.1007/s00705-004-0369-9 – ident: 16 doi: 10.1017/S1751731107001097 – ident: 1 doi: 10.1016/j.jviromet.2016.03.002 – ident: 4 doi: 10.1093/ps/77.8.1139 – ident: 11 doi: 10.1016/S0378-1135(97)81568-4 – ident: 21 doi: 10.1080/03079451003604621 – ident: 6 doi: 10.20506/rst.19.2.1228 – ident: 27 doi: 10.1093/nar/gkm306 – ident: 2 doi: 10.1177/1040638719844297 – ident: 8 doi: 10.1080/03079457.2016.1248898 – ident: 15 doi: 10.1128/JVI.79.5.2859-2868.2005 – ident: 31 doi: 10.2307/1589779 – ident: 3 doi: 10.1080/03079457.2014.977223 – ident: 19 – ident: 13 doi: 10.1046/j.1365-2567.2003.01643.x – ident: 9 doi: 10.1637/11525-110216-Reg.1 – ident: 7 doi: 10.1292/jvms.10-0203 – ident: 25 doi: 10.1016/j.mcp.2018.11.004 – ident: 30 doi: 10.1080/03079457309353780 – ident: 26 doi: 10.1292/jvms.15-0552 – ident: 28 doi: 10.1186/s12985-017-0849-7 – ident: 29 doi: 10.1016/j.jviromet.2011.03.028 |
SSID | ssj0021469 |
Score | 2.3473098 |
Snippet | Infectious diseases are an important issue in the poultry industry, requiring early diagnosis and countermeasures. To address this, we present a system based... Infectious diseases are an important issue in the poultry industry, requiring early diagnosis and countermeasures. To address this, we present a system based... |
SourceID | pubmedcentral proquest pubmed crossref jstage |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 407 |
SubjectTerms | Animals Avian Pathology chicken Chickens - microbiology Communicable Diseases - veterinary DNA viruses Female Genomes infectious disease Infectious diseases pathogen detection system Pathogens Polymerase chain reaction Poultry Poultry Diseases real-time PCR Real-Time Polymerase Chain Reaction - veterinary RNA Viruses |
Title | Development of a one-run real-time PCR detection system for pathogens associated with poultry infectious diseases |
URI | https://www.jstage.jst.go.jp/article/jvms/85/4/85_22-0482/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/36792182 https://www.proquest.com/docview/2813492464 https://www.proquest.com/docview/2777406797 https://pubmed.ncbi.nlm.nih.gov/PMC10139789 |
Volume | 85 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Veterinary Medical Science, 2023, Vol.85(4), pp.407-411 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3dTxQxEJ8QJIYXI-DHKpCa6JNZPNtuu40hxBAJaI4YA4a3ptvtquTcg9s7o_-9M7vdDUfgZV86-5HOzM5v2ulvAF5XmZdB-JCKUo5SqcmlcuLGw1BZjBQvVcvANz5Vx-fy80V2sQJ9t9E4gc2dqR31kzqfTfb-Xv87QIffb7kRDH93-ed3s4c5FRoj_owfYEzS1MtgLIf9BOpebWLZ--071uGhUNoQk_lSbFq7RHj2I9yFPG8XUN6ISEeP4VGEkuxjp_sNWAn1Jmx-p_qW9pAtG8d98y24vlEbxKYVc2xah3S2qBlixklKDebZ18NvrAzztjSrZh3DM0NIy6hp8RTtrGEu6jKUjNZv2RU1pcYX9RVdi4bFDZ_mCZwdfTo7PE5js4XUIwSap8ZoUxS5lkFhwCpDkQkEP0UZvAtehGqkKNeoECEIlxvyZe68QkFptBdKPIXVGj_9OTCHEJN7nclCEV-acNWoQhSgS-OMqrI8gbf9LFsficipH8bEUkKC6rGkHsu5JfUk8GaQvuoIOO6R-9ApbJCKrtdJ5ZmVdInSwyCdbcMfRALbvZZtb4OW5y13o1QygVfDMLof7am4OuCsWq4RP9NinE7gWWcUwwf0ZpVAvmQugwBRey-P1L9-thTf71tknpsX9z70JaxzxFvdatA2rM5ni7CD-Ghe7GJmcPJlt3WA_89BEx8 |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+one-run+real-time+PCR+detection+system+for+pathogens+associated+with+poultry+infectious+diseases&rft.jtitle=Journal+of+veterinary+medical+science&rft.au=Shibanuma%2C+Takuya&rft.au=Nunomura%2C+Yuka&rft.au=Oba%2C+Mami&rft.au=Kawahara%2C+Fumiya&rft.date=2023&rft.eissn=1347-7439&rft.volume=85&rft.issue=4&rft.spage=407&rft_id=info:doi/10.1292%2Fjvms.22-0482&rft_id=info%3Apmid%2F36792182&rft.externalDocID=36792182 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-7250&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-7250&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-7250&client=summon |