Synergy and Other Interactions between Polymethoxyflavones from Citrus Byproducts

The citrus by-products released from citrus processing plants may contain high levels of potentially bioactive compounds such as flavonoids, which are a widely distributed group of polyphenolic compounds with health-related properties based on their antioxidant activity. In the study reported here,...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 20; no. 11; pp. 20079 - 20106
Main Authors García, Benito F, Torres, Ascensión, Macías, Francisco A
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 06.11.2015
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The citrus by-products released from citrus processing plants may contain high levels of potentially bioactive compounds such as flavonoids, which are a widely distributed group of polyphenolic compounds with health-related properties based on their antioxidant activity. In the study reported here, the potential bioactivities and antioxidant activities of extracts, fractions and compounds from citrus by-products were evaluated along with the chemical interactions of binary mixtures of compounds and complex mixtures. The bioactivities and interactions were evaluated in wheat coleoptile bioassays and the antioxidant activity was evaluated by the al DPPH (2,2-diphenyl-1-picrylhdrazyl radical) radical scavenging assay. The extracts, fractions and most of the isolated compounds (mainly polymethoxyflavones) showed high activity in the wheat coleoptile bioassay. However, the antioxidant activity was not consistently high, except in the acetone extract fractions. Moreover, a study of the interactions with binary mixtures of polymethoxyflavones showed the occurrence of synergistic effects. The complex mixtures of fractions composed mainly of polymethoxyflavones caused a synergistic effect when it was added to a bioactive compound such as anethole. The results reported here highlight a new application for the wheat coleoptile bioassay as a quick tool to detect potential synergistic effects in compounds or mixtures.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules201119677