F7 and topotecan co-loaded thermosensitive liposome as a nano-drug delivery system for tumor hyperthermia

In order to enhance the targeting efficiency and reduce anti-tumor drug's side effects, topotecan (TPT) and F7 were co-loaded in thermosensitive liposomes (F7-TPT-TSL), which show enhanced permeability and retention in tumors, as well as local controlled release by heating in vitro. TPT is a wa...

Full description

Saved in:
Bibliographic Details
Published inDrug delivery Vol. 27; no. 1; pp. 836 - 847
Main Authors Du, Chunyang, Li, Shuangshuang, Li, Yuan, Galons, Hervé, Guo, Na, Teng, Yuou, Zhang, Yongmin, Li, Mingyuan, Yu, Peng
Format Journal Article
LanguageEnglish
Published England Taylor & Francis 01.01.2020
Taylor & Francis Ltd
Taylor & Francis Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In order to enhance the targeting efficiency and reduce anti-tumor drug's side effects, topotecan (TPT) and F7 were co-loaded in thermosensitive liposomes (F7-TPT-TSL), which show enhanced permeability and retention in tumors, as well as local controlled release by heating in vitro. TPT is a water-soluble inhibitor of topoisomerase I that is converted to an inactive carboxylate structure under physiological conditions (pH 7.4). F7 is a novel drug significantly resistant to cyclin-dependent kinase but its use was restricted by its high toxicity. F7-TPT-TSL had excellent particle distribution (about 103 nm), high entrapment efficiency (>95%), obvious thermosensitive property, and good stability. Confocal microscopy demonstrated specific higher accumulation of TSL in tumor cells. MTT proved F7-TPT-TSL/H had strongest cell lethality compared with other formulations. Then therapeutic efficacy revealed synergism of TPT and F7 co-loaded in TSL, together with hyperthermia. Therefore, the F7-TPT-TSL may serve as a promising system for temperature triggered cancer treatment.
ISSN:1071-7544
1521-0464
DOI:10.1080/10717544.2020.1772409