Solid-state phase transformation kinetics in the near-equilibrium regime
Solid-state phase transformation kinetics in the near-equilibrium regime behaves differently from that in extremely non-equilibrium regime since their thermodynamic states are different. Incorporating temperature- and transformed fraction-dependent thermodynamic terms, a thermo-kinetic model is deri...
Saved in:
Published in | Journal of materials science Vol. 50; no. 2; pp. 662 - 677 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Boston
Springer US
01.01.2015
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Solid-state phase transformation kinetics in the near-equilibrium regime behaves differently from that in extremely non-equilibrium regime since their thermodynamic states are different. Incorporating temperature- and transformed fraction-dependent thermodynamic terms, a thermo-kinetic model is derived to describe the transformation kinetics in the near-equilibrium regime. The model predicts a sluggish stage in isothermally conducted transformation and a temperature-dependent stage in non-isothermally conducted transformation. Then, the kinetics of
γ
/
α
transformations in two binary substitutional Fe-based alloys (i.e. Fe-3.28 at.% Mn and Fe-1.73 at.% Co), measured by isothermal and non-isothermal dilatometry, is investigated by the newly proposed model. The model quantitatively describes the retarded isothermal kinetics in Fe-3.28 at.% Mn alloy and the abnormal non-isothermal kinetics in Fe-1.73 at.% Co alloy. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0022-2461 1573-4803 |
DOI: | 10.1007/s10853-014-8625-1 |