Relative extended haplotype homozygosity signals across breeds reveal dairy and beef specific signatures of selection

A number of methods are available to scan a genome for selection signatures by evaluating patterns of diversity within and between breeds. Among these, "extended haplotype homozygosity" (EHH) is a reliable approach to detect genome regions under recent selective pressure. The objective of...

Full description

Saved in:
Bibliographic Details
Published inGenetics selection evolution (Paris) Vol. 47; no. 1; p. 25
Main Authors Bomba, Lorenzo, Nicolazzi, Ezequiel L, Milanesi, Marco, Negrini, Riccardo, Mancini, Giordano, Biscarini, Filippo, Stella, Alessandra, Valentini, Alessio, Ajmone-Marsan, Paolo
Format Journal Article
LanguageEnglish
Published France BioMed Central Ltd 02.04.2015
BioMed Central
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A number of methods are available to scan a genome for selection signatures by evaluating patterns of diversity within and between breeds. Among these, "extended haplotype homozygosity" (EHH) is a reliable approach to detect genome regions under recent selective pressure. The objective of this study was to use this approach to identify regions that are under recent positive selection and shared by the most representative Italian dairy and beef cattle breeds. A total of 3220 animals from Italian Holstein (2179), Italian Brown (775), Simmental (493), Marchigiana (485) and Piedmontese (379) breeds were genotyped with the Illumina BovineSNP50 BeadChip v.1. After standard quality control procedures, genotypes were phased and core haplotypes were identified. The decay of linkage disequilibrium (LD) for each core haplotype was assessed by measuring the EHH. Since accurate estimates of local recombination rates were not available, relative EHH (rEHH) was calculated for each core haplotype. Genomic regions that carry frequent core haplotypes and with significant rEHH values were considered as candidates for recent positive selection. Candidate regions were aligned across to identify signals shared by dairy or beef cattle breeds. Overall, 82 and 87 common regions were detected among dairy and beef cattle breeds, respectively. Bioinformatic analysis identified 244 and 232 genes in these common genomic regions. Gene annotation and pathway analysis showed that these genes are involved in molecular functions that are biologically related to milk or meat production. Our results suggest that a multi-breed approach can lead to the identification of genomic signatures in breeds of cattle that are selected for the same production goal and thus to the localisation of genomic regions of interest in dairy and beef production.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1297-9686
0999-193X
1297-9686
DOI:10.1186/s12711-015-0113-9