TXNIP inhibition in the treatment of type 2 diabetes mellitus: design, synthesis, and biological evaluation of quinazoline derivatives

Thioredoxin interacting protein (TXNIP) is a potential drug target for type 2 diabetes mellitus (T2DM) treatment. A series of quinazoline derivatives were designed, synthesised, and evaluated to inhibit TXNIP expression and protect from palmitate (PA)-induced β cell injury. In vitro cell viability a...

Full description

Saved in:
Bibliographic Details
Published inJournal of enzyme inhibition and medicinal chemistry Vol. 38; no. 1; p. 2166937
Main Authors Li, Aiyun, Guan, Li, Su, Wanzhen, Zhao, Ning, Song, Xuwen, Wang, Jin, Tang, Xiaoxiao, Li, Weize, Jiao, Xiangying
Format Journal Article
LanguageEnglish
Published England Taylor & Francis 01.12.2023
Taylor & Francis Ltd
Taylor & Francis Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Thioredoxin interacting protein (TXNIP) is a potential drug target for type 2 diabetes mellitus (T2DM) treatment. A series of quinazoline derivatives were designed, synthesised, and evaluated to inhibit TXNIP expression and protect from palmitate (PA)-induced β cell injury. In vitro cell viability assay showed that compounds D-2 and C-1 could effectively protect β cell from PA-induced apoptosis, and subsequent results showed that these two compounds decreased TXNIP expression by accelerating its protein degradation. Mechanistically, compounds D-2 and C-1 reduced intracellular reactive oxygen species (ROS) production and modulated TXNIP-NLRP3 inflammasome signalling, and thus alleviating oxidative stress injury and inflammatory response under PA insult. Besides, these two compounds were predicted to possess better drug-likeness properties using SwissADME. The present study showed that compounds D-2 and C-1, especially compound D-2, were potent pancreatic β cell protective agents to inhibit TXNIP expression and might serve as promising lead candidates for the treatment of T2DM.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Supplemental data for this article can be accessed online at https://doi.org/10.1080/14756366.2023.2166937.
Aiyun Li, Li Guan, and Wanzhen Su contributed equally to this work.
ISSN:1475-6366
1475-6374
DOI:10.1080/14756366.2023.2166937