Generation time of the alpha and delta SARS-CoV-2 variants: an epidemiological analysis

In May, 2021, the delta (B.1.617.2) SARS-CoV-2 variant became dominant in the UK, superseded by the omicron (B.1.1.529) variant in December, 2021. The delta variant is associated with increased transmissibility compared with the alpha variant, which was the dominant variant in the UK between Decembe...

Full description

Saved in:
Bibliographic Details
Published inThe Lancet infectious diseases Vol. 22; no. 5; pp. 603 - 610
Main Authors Hart, William S, Miller, Elizabeth, Andrews, Nick J, Waight, Pauline, Maini, Philip K, Funk, Sebastian, Thompson, Robin N
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.05.2022
Elsevier Limited
Published by Elsevier Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In May, 2021, the delta (B.1.617.2) SARS-CoV-2 variant became dominant in the UK, superseded by the omicron (B.1.1.529) variant in December, 2021. The delta variant is associated with increased transmissibility compared with the alpha variant, which was the dominant variant in the UK between December, 2020, and May, 2021. To understand transmission and the effectiveness of interventions, we aimed to investigate whether the delta variant generation time (the interval between infections in infector–infectee pairs) is shorter—ie, transmissions are happening more quickly—than that of the alpha variant. In this epidemiological analysis, we analysed transmission data from an ongoing UK Health Security Agency (UKHSA) prospective household study. Households were recruited to the study after an index case had a positive PCR test and genomic sequencing was used to determine the variant responsible. By fitting a mathematical transmission model to the data, we estimated the intrinsic generation time (which assumes a constant supply of susceptible individuals throughout infection) and the household generation time (which reflects realised transmission in the study households, accounting for susceptible depletion) for the alpha and delta variants. Between February and August, 2021, 227 households consisting of 559 participants were recruited to the UKHSA study. The alpha variant was detected or assumed to be responsible for infections in 131 households (243 infections in 334 participants) recruited in February–May, and the delta variant in 96 households (174 infections in 225 participants) in May–August. The mean intrinsic generation time was shorter for the delta variant (4·7 days, 95% credible interval [CI] 4·1–5·6) than the alpha variant (5·5 days, 4·7–6·5), with 92% posterior probability. The mean household generation time was 28% (95% CI 0–48%) shorter for the delta variant (3·2 days, 95% CI 2·5–4·2) than the alpha variant (4·5 days, 3·7–5·4), with 97·5% posterior probability. The delta variant transmits more quickly in households than the alpha variant, which can be attributed to faster depletion of susceptible individuals in households and a possible decrease in the intrinsic generation time. Interventions such as contact tracing, testing, and isolation might be less effective if transmission of the virus occurs quickly. National Institute for Health Research, UK Health Security Agency, Engineering and Physical Sciences Research Council, and UK Research and Innovation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1473-3099
1474-4457
DOI:10.1016/S1473-3099(22)00001-9