Activities of bone morphogenetic proteins in prolactin regulation by somatostatin analogs in rat pituitary GH3 cells

Involvement of the pituitary BMP system in the modulation of prolactin (PRL) secretion regulated by somatostatin analogs, including octreotide (OCT) and pasireotide (SOM230), and a dopamine agonist, bromocriptine (BRC), was examined in GH3 cells. GH3 cells are rat pituitary somato-lactotrope tumor c...

Full description

Saved in:
Bibliographic Details
Published inMolecular and cellular endocrinology Vol. 332; no. 1-2; pp. 163 - 169
Main Authors Tsukamoto, Naoko, Otsuka, Fumio, Miyoshi, Tomoko, Inagaki, Kenichi, Nakamura, Eri, Suzuki, Jiro, Ogura, Toshio, Iwasaki, Yasumasa, Makino, Hirofumi
Format Journal Article
LanguageEnglish
Published Ireland Elsevier Ireland Ltd 30.01.2011
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Involvement of the pituitary BMP system in the modulation of prolactin (PRL) secretion regulated by somatostatin analogs, including octreotide (OCT) and pasireotide (SOM230), and a dopamine agonist, bromocriptine (BRC), was examined in GH3 cells. GH3 cells are rat pituitary somato-lactotrope tumor cells that express somatostatin receptors (SSTRs) and BMP system molecules including BMP-4 and -6. Treatment with BMP-4 and -6 increased PRL and cAMP secretion by GH3 cells. The BMP-4 effects were neutralized by adding a BMP-binding protein Noggin. These findings suggest the activity of endogenous BMPs in augmenting PRL secretion by GH3 cells. BRC and SOM230 reduced PRL secretion, but OCT failed to reduce the PRL level. In GH3 cells activated by forskolin, BRC suppressed forskolin-induced PRL secretion with reduction in cAMP levels. OCT did not affect forskolin-induced PRL level, while SOM230 reduced PRL secretion and PRL mRNA expression induced by forskolin. BMP-4 treatment enhanced the reducing effect of SOM230 on forskolin-induced PRL level while BMP-4 did not affect the effects of OCT or BRC. Noggin treatment had no significant effect on the BRC actions reducing PRL levels by GH3 cells. However, in the presence of Noggin, OCT elicited an inhibitory effect on forskolin-induced PRL secretion and PRL mRNA expression, whereas the SOM230 effect on PRL reduction was in turn impaired. It was further found that BMP-4 and -6 suppressed SSTR-2 but increased SSTR-5 mRNA expression of GH3 cells. These findings indicate that Noggin rescues SSTR-2 but downregulates SSTR-5 by neutralizing endogenous BMP actions, leading to an increase in OCT sensitivity and a decrease in SOM230 sensitivity of GH3 cells. In addition, BMP signaling was facilitated in GH3 cells treated with forskolin. Collectively, these findings suggest that BMPs elicit differential actions in the regulation of PRL release dependent on cellular cAMP-PKA activity. BMPs may play a key role in the modulation of SSTR sensitivity of somato-lactotrope cells in an autocrine/paracrine manner.
Bibliography:http://dx.doi.org/10.1016/j.mce.2010.10.008
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0303-7207
1872-8057
DOI:10.1016/j.mce.2010.10.008