A novel approach for in vivo screening of toxins using the Drosophila Giant Fiber circuit

Finding compounds that affect neuronal or muscular function is of great interest as potential therapeutic agents for a variety of neurological disorders. Alternative applications for these compounds include their use as molecular probes as well as insecticides. We have developed a bioassay that requ...

Full description

Saved in:
Bibliographic Details
Published inToxicon (Oxford) Vol. 56; no. 8; pp. 1398 - 1407
Main Authors Mejia, Monica, Heghinian, Mari D., Busch, Alexandra, Armishaw, Chris J., Marí, Frank, Godenschwege, Tanja A.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.12.2010
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Finding compounds that affect neuronal or muscular function is of great interest as potential therapeutic agents for a variety of neurological disorders. Alternative applications for these compounds include their use as molecular probes as well as insecticides. We have developed a bioassay that requires small amounts of compounds and allows for unbiased screening of biological activity in vivo. For this, we paired administering compounds in a non-invasive manner with simultaneous electrophysiological recordings from a well-characterized neuronal circuit, the Giant Fiber System of Drosophila melanogaster, which mediates the escape response of the fly. The circuit encompasses a variety of neurons with cholinergic, glutamatergic, and electrical synapses as well as neuromuscular junctions. Electrophysiological recordings from this system allow for the detection of compound-related effects against any molecular target on these components. Here, we provide evidence that this novel bioassay works with small molecules such as the cholinergic receptor blocker mecamylamine hydrochloride and the potassium channel blocker tetraethylammonium hydroxide, as well as with venom from Conus brunneus and isolated conopeptides. Conopeptides have been developed into powerful drugs, such as the painkillers Prialt™ and Xen2174. However, most conopeptides have yet to be characterized, revealing the need for a rapid and straightforward screening method. Our findings show that mecamylamine hydrochloride, as well as the α-conotoxin ImI, which is known to be an antagonist of the human α7 nicotinic acetylcholine receptor, efficiently disrupted the synaptic transmission of a Drosophila α7 nicotinic acetylcholine receptor-dependent pathway in our circuit but did not affect the function of neurons with other types of synapses. This demonstrates that our bioassay is a valid tool for screening for compounds relevant to human health.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0041-0101
1879-3150
DOI:10.1016/j.toxicon.2010.08.005