Histatins, a novel family of histidine-rich proteins in human parotid secretion. Isolation, characterization, primary structure, and fungistatic effects on Candida albicans
Histatins 1, 3, and 5 from human parotid secretion were isolated by gel filtration on Bio-Gel P-2 and reverse phase high performance liquid chromatography. The complete amino acid sequences of histatins determined by automated Edman degradation of the proteins, Staphylococcus aureus V8 protease, and...
Saved in:
Published in | The Journal of biological chemistry Vol. 263; no. 16; pp. 7472 - 7477 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Bethesda, MD
Elsevier Inc
05.06.1988
American Society for Biochemistry and Molecular Biology |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Histatins 1, 3, and 5 from human parotid secretion were isolated by gel filtration on Bio-Gel P-2 and reverse phase high performance liquid chromatography. The complete amino acid sequences of histatins determined by automated Edman degradation of the proteins, Staphylococcus aureus V8 protease, and tryptic peptides, are as follows: (Sequence: see text). Histatins 1, 3, and 5 contain 38, 32, and 24 amino acid residues, have molecular weights of 4929, 4063, and 3037, respectively, and contain 7 residues of histidine. Histatin 1 contains 1 mol of phosphate/mol of protein; histatins 3 and 5 lack phosphate. With the exception of Glu (residue 4) and Arg (residue 11) in histatin 1, the first 22 amino acid residues of all three histatins are identical, and the carboxyl-terminal 7 residues of histatins 1 and 3 are also identical. The sequence, -Glu-Phe-Pro-Phe-Tyr-Gly-Asp-Tyr-Gly- (residues 23-29), in histatin 1 is absent in histatin 3; and the sequence, -Gly-Tyr-Arg- (residues 23-25), in histatin 3 is absent in histatin 1. The complete sequence of histatin 5 is contained within the amino terminal 24 residues of histatin 3. The structural data suggest that histatins 1 and 3 are derived from different structural genes, whereas histatin 5 is a proteolytic product of histatin 3. All three histatins exhibit the ability to kill the pathogenic yeast, Candida albicans. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1016/S0021-9258(18)68522-9 |