Increasing oxygen deficiency changes rare and moderately abundant bacterial communities in coastal soft sediments

Coastal hypoxia is a major environmental problem worldwide. Hypoxia-induced changes in sediment bacterial communities harm marine ecosystems and alter biogeochemical cycles. Nevertheless, the resistance of sediment bacterial communities to hypoxic stress is unknown. We investigated changes in bacter...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 9; no. 1; pp. 16341 - 14
Main Authors Sinkko, Hanna, Hepolehto, Iina, Lyra, Christina, Rinta-Kanto, Johanna M., Villnäs, Anna, Norkko, Joanna, Norkko, Alf, Timonen, Sari
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 08.11.2019
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Coastal hypoxia is a major environmental problem worldwide. Hypoxia-induced changes in sediment bacterial communities harm marine ecosystems and alter biogeochemical cycles. Nevertheless, the resistance of sediment bacterial communities to hypoxic stress is unknown. We investigated changes in bacterial communities during hypoxic-anoxic disturbance by artificially inducing oxygen deficiency to the seafloor for 0, 3, 7, and 48 days, with subsequent molecular biological analyses. We further investigated relationships between bacterial communities, benthic macrofauna and nutrient effluxes across the sediment-water-interface during hypoxic-anoxic stress, considering differentially abundant operational taxonomic units (OTUs). The composition of the moderately abundant OTUs changed significantly after seven days of oxygen deficiency, while the abundant and rare OTUs first changed after 48 days. High bacterial diversity maintained the resistance of the communities during oxygen deficiency until it dropped after 48 days, likely due to anoxia-induced loss of macrofaunal diversity and bioturbation. Nutrient fluxes, especially ammonium, correlated positively with the moderate and rare OTUs, including potential sulfate reducers. Correlations may reflect bacteria-mediated nutrient effluxes that accelerate eutrophication. The study suggests that even slightly higher bottom-water oxygen concentrations, which could sustain macrofaunal bioturbation, enable bacterial communities to resist large compositional changes and decrease the harmful consequences of hypoxia in marine ecosystems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-019-51432-1