Suppression of Macrophage Activation by Sodium Danshensu via HIF-1α/STAT3/NLRP3 Pathway Ameliorated Collagen-Induced Arthritis in Mice

It is still a clinical challenge to sustain the remission of rheumatoid arthritis (RA); thus, identifying more effective and safer agents for RA treatment remains an urgent demand. We investigated the anti-arthritic activity and potential mechanism of action of sodium Danshensu (SDSS), a structurall...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 28; no. 4; p. 1551
Main Authors Wu, Danbin, Xu, Jia, Jiao, Wei, Liu, Lijuan, Yu, Jiahui, Zhang, Mingying, Chen, Guangxing
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.02.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:It is still a clinical challenge to sustain the remission of rheumatoid arthritis (RA); thus, identifying more effective and safer agents for RA treatment remains an urgent demand. We investigated the anti-arthritic activity and potential mechanism of action of sodium Danshensu (SDSS), a structurally representative water-soluble derivative of Danshen, on collagen-induced arthritis (CIA) mice. Our results showed that paw edema, synovium hyperplasia, bone destruction, and the serum levels of both IL-1β and IL-6 were ameliorated by SDSS (40 mg/kg·d) in CIA mice. In addition, there was no difference between SDSS and methotrexate (MTX, 2 mg/kg·3d) treatment in the above indicators. Further mechanism studies illustrated that SDSS inhibited IL-1β secretion by downregulating the HIF-1α/STAT3/NLRP3 pathway in macrophages. On the other hand, HIF-1α accumulation and HIF-1α/STAT3/NLRP3 pathway activation by IOX4 stimulation reduced the therapeutic effect of SDSS. These findings demonstrate that SDSS displays anti-arthritic activity in CIA mice and prevents proinflammatory cytokines secretion in macrophages by suppressing the HIF-1α/STAT3/NLRP3 pathway.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules28041551