Free and protein-conjugated polyamines in mouse epidermal cells. Effect of high calcium and retinoic acid

We have investigated polyamine metabolism in primary cultures of mouse epidermal cells. These cells, which grow at low Ca2+ levels as a monolayer with characteristics of basal cells, terminally differentiate when the extracellular Ca2+ level is raised above 1 mM. The cellular levels of free polyamin...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 263; no. 8; pp. 3790 - 3794
Main Authors Piacentini, M, Martinet, N, Beninati, S, Folk, J E
Format Journal Article
LanguageEnglish
Published Bethesda, MD Elsevier Inc 15.03.1988
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We have investigated polyamine metabolism in primary cultures of mouse epidermal cells. These cells, which grow at low Ca2+ levels as a monolayer with characteristics of basal cells, terminally differentiate when the extracellular Ca2+ level is raised above 1 mM. The cellular levels of free polyamines were measured, and, after incubation of cell cultures with [3H]putrescine, the distribution of label in both acid-soluble and acid-insoluble cellular components was examined. Free polyamine levels were reduced in cells induced to differentiate. Treatment with retinoic acid, which prevents differentiation and causes increased proliferation, resulted in an increase in free putrescine. Upon adjustment of the calcium concentration to a level that induces differentiation, the enzyme transglutaminase was activated, and a concomitant increase in the level of both protein-bound mono- and bis-gamma-glutamyl derivatives of putrescine and spermidine was observed. Isolation of a material of apparent molecular weight about 6000 which contains only mono-gamma-glutamylpolyamines and the finding of both mono- and bis-gamma-glutamylpolyamines in the protein fraction containing cornified cell envelopes provided the basis for speculation on polyamines in envelope formation. Our data suggest that polyamines play a role during epidermal cell differentiation through transglutaminase-mediated post-translational modification.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(18)68993-8