Nonlinear effects in reflecting and colliding internal wave beams
Using small-amplitude expansions, we discuss nonlinear effects in the reflection from a sloping wall of a time-harmonic (frequency $\omega$) plane-wave beam of finite cross-section in a uniformly stratified Boussinesq fluid with constant buoyancy frequency $N_{0}$. The linear solution features the i...
Saved in:
Published in | Journal of fluid mechanics Vol. 526; pp. 217 - 243 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
10.03.2005
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Using small-amplitude expansions, we discuss nonlinear effects in the reflection from a sloping wall of a time-harmonic (frequency $\omega$) plane-wave beam of finite cross-section in a uniformly stratified Boussinesq fluid with constant buoyancy frequency $N_{0}$. The linear solution features the incident and a reflected beam, also of frequency $\omega$, that is found on the same (opposite) side to the vertical as the incident beam if the angle of incidence relative to the horizontal is less (greater) than the wall inclination. As each of these beams is an exact nonlinear solution, nonlinear interactions are confined solely in the vicinity of the wall where the two beams meet. At higher orders, this interaction region acts as a source of a mean and higher-harmonic disturbances with frequencies $n\omega$ ($n\,{=}\,2,3,\ldots$); for $n\omega\,{<}\,N_{0}$ the latter radiate in the far field, forming additional reflected beams along $\sin^{-1}(n\omega/N_{0})$ to the horizontal. Depending on the flow geometry, higher-harmonic beams can be found on the opposite side of the vertical from the primary reflected beam. Using the same approach, we also discuss collisions of two beams propagating in different directions. Nonlinear interactions in the vicinity of the collision region induce secondary beams with frequencies equal to the sum and difference of those of the colliding beams. The predictions of the steady-state theory are illustrated by specific examples and compared against unsteady numerical simulations. |
---|---|
Bibliography: | PII:S0022112004002769 istex:5286BE25DAA4599B513AA5A96065EFB85B3D4369 ark:/67375/6GQ-FQP1K751-2 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/S0022112004002769 |