Inhibition of endothelin A receptor by a novel, selective receptor antagonist enhances morphine-induced analgesia: Possible functional interaction of dimerized endothelin A and μ-opioid receptors
The misuse of opioids has led to an epidemic in recent times. The endothelin A receptor (ETAR) has recently attracted attention as a novel therapeutic target to enhance opioid analgesia. We hypothesized that endothelin A receptors may affect pain mechanisms by heterodimerization with μ opioid recept...
Saved in:
Published in | Biomedicine & pharmacotherapy Vol. 141; p. 111800 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
France
Elsevier Masson SAS
01.09.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0753-3322 1950-6007 1950-6007 |
DOI | 10.1016/j.biopha.2021.111800 |
Cover
Summary: | The misuse of opioids has led to an epidemic in recent times. The endothelin A receptor (ETAR) has recently attracted attention as a novel therapeutic target to enhance opioid analgesia. We hypothesized that endothelin A receptors may affect pain mechanisms by heterodimerization with μ opioid receptors. We examined the mechanisms of ETAR-mediated pain and the potential therapeutic effects of an ETAR antagonist, Compound-E, as an agent for analgesia.
Real-time in vitro effect of Compound-E on morphine response was assessed in HEK293 cells expressing both endothelin A and μ opioid receptors through CellKey™ and cADDis cAMP assays. Endothelin A/μ opioid receptor dimerization was assessed by immunoprecipitation and live cell imaging. The in vivo effect of Compound-E was evaluated using a morphine analgesia mouse model that observed escape response behavior, body temperature, and locomotor activity.
In CellKey™ and cAMP assays, pretreatment of cells with endothelin-1 attenuated morphine-induced responses. These responses were improved by Compound-E, but not by BQ-123 nor by bosentan, an ETAR and endothelin B receptor antagonist. Dimerization of ETARs and μ opioid receptors was confirmed by Western blot and total internal reflection fluorescence microscopy in live cells. In vivo, Compound-E potentiated and prolonged the analgesic effects of morphine, enhanced hypothermia, and increased locomotor activity compared to morphine alone.
The results suggest that attenuation by endothelin-1 of morphine analgesia may be caused by dimerization of Endothelin A/μ opioid receptors. The novel ETAR antagonist Compound-E could be an effective adjunct to reduce opioid use.
[Display omitted]
•Endothelin-1 attenuated the effect of morphine.•Dimerized endothelin A/μ opioid receptors may cause attenuation of morphine effects.•A novel selective ETAR antagonist enhanced the morphine-induced analgesic effect.•The ETAR antagonist may reduce the required dosage of opioids. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0753-3322 1950-6007 1950-6007 |
DOI: | 10.1016/j.biopha.2021.111800 |