Efficient Degradation of Tetracycline Antibiotics by Engineered Myoglobin with High Peroxidase Activity

Tetracyclines are one class of widely used antibiotics. Meanwhile, due to abuse and improper disposal, they are often detected in wastewater, which causes a series of environmental problems and poses a threat to human health and safety. As an efficient and environmentally friendly method, enzymatic...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 27; no. 24; p. 8660
Main Authors Wu, Guang-Rong, Sun, Li-Juan, Xu, Jia-Kun, Gao, Shu-Qin, Tan, Xiang-Shi, Lin, Ying-Wu
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.12.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Tetracyclines are one class of widely used antibiotics. Meanwhile, due to abuse and improper disposal, they are often detected in wastewater, which causes a series of environmental problems and poses a threat to human health and safety. As an efficient and environmentally friendly method, enzymatic catalysis has attracted much attention. In previous studies, we have designed an efficient peroxidase (F43Y/P88W/F138W Mb, termed YWW Mb) based on the protein scaffold of myoglobin (Mb), an O carrier, by modifying the heme active center and introducing two Trp residues. In this study, we further applied it to degrade the tetracycline antibiotics. Both UV-Vis and HPLC studies showed that the triple mutant YWW Mb was able to catalyze the degradation of tetracycline, oxytetracycline, doxycycline, and chlortetracycline effectively, with a degradation rate of ~100%, ~98%, ~94%, and ~90%, respectively, within 5 min by using H O as an oxidant. These activities are much higher than those of wild-type Mb and other heme enzymes such as manganese peroxidase. As further analyzed by UPLC-ESI-MS, we identified multiple degradation products and thus proposed possible degradation mechanisms. In addition, the toxicity of the products was analyzed by using in vitro antibacterial experiments of . Therefore, this study indicates that the engineered heme enzyme has potential applications for environmental remediation by degradation of tetracycline antibiotics.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules27248660