Systemic functional enrichment and ceRNA network identification following peripheral nerve injury

Peripheral nerve injury is a worldwide clinical issue that impacts patients' quality of life and causes huge society and economic burden. Injured peripheral nerves are able to regenerate by themselves. However, for severe peripheral nerve injury, the regenerative abilities are very limited and...

Full description

Saved in:
Bibliographic Details
Published inMolecular brain Vol. 11; no. 1; p. 73
Main Authors Qian, Tianmei, Fan, Chunlin, Liu, Qianyan, Yi, Sheng
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 17.12.2018
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Peripheral nerve injury is a worldwide clinical issue that impacts patients' quality of life and causes huge society and economic burden. Injured peripheral nerves are able to regenerate by themselves. However, for severe peripheral nerve injury, the regenerative abilities are very limited and the regenerative effects are very poor. A better understanding of the mechanisms following peripheral nerve injury will benefit its clinical treatment. In this study, we systematically explored the dynamic changes of mRNAs and long non-coding RNAs (lncRNAs) in the injured sciatic nerve segments after nerve crush, identified significantly involved Gene ontology (GO) terms and Kyoto Enrichment of Genes and Genomes (KEGG) pathways, and innovatively analyzed the correlation of differentially expressed mRNAs and lncRNAs. After the clustering of co-expressed mRNAs and lncRNAs, we performed functional analysis, selected GO term "negative regulation of cell proliferation", and constructed a competing endogenous RNA (ceRNA) network of LIF and HMOX1 gene in this GO term. This study is the first to provide a systematic dissection of mRNA-microRNA (miRNA)-lncRNA ceRNA network following peripheral nerve injury and thus lays a foundation for further investigations of the regulating mechanisms of non-coding RNAs in peripheral nerve repair and regeneration.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1756-6606
1756-6606
DOI:10.1186/s13041-018-0421-4