利用改进XGBoost模型预测和分析湿地潜流带地下水中硝态氮含量

湿地潜流带是地下水中氮循环的重要场所,以洞庭湖湿地潜流带为研究对象,探讨地下水中氮素迁移转化影响因素与作用机制。在湘江入湖口湿地设置了4个剖面共16口监测孔,进行了为期一个水文年的地下水取样与测试分析。研究选定的特征参数包括氧化还原电位(Eh)、溶解氧(DO)、水温(T)、地下水位(H)及埋深、酸碱度(pH)以及溶解有机碳(DOC)等。利用XGBoost方法建立机器学习模型,用于预测硝态氮的相对浓度,并通过贝叶斯优化(BO)、麻雀搜索算法(SSA)、粒子群算法(PSO)分别对XGBoost预测模型进行超参数优化,得到最佳XGBoost预测模型(BO-XGBoost)。在此基础上,采用SHAP(...

Full description

Saved in:
Bibliographic Details
Published in上海国土资源 Vol. 45; no. 2; pp. 41 - 47
Main Authors 周念清, 夏明锐, 陆帅帅, 郭梦申, 王在艾, 赵文刚
Format Journal Article
LanguageChinese
Published 上海市地质学会 30.06.2024
上海市地质调查研究院
同济大学土木工程学院水利工程系,上海 200092%湖南省水利水电科学研究院,湖南·长沙 410007
Subjects
Online AccessGet full text
ISSN2095-1329
DOI10.3969/j.issn.2095-1329.2024.02.009

Cover

More Information
Summary:湿地潜流带是地下水中氮循环的重要场所,以洞庭湖湿地潜流带为研究对象,探讨地下水中氮素迁移转化影响因素与作用机制。在湘江入湖口湿地设置了4个剖面共16口监测孔,进行了为期一个水文年的地下水取样与测试分析。研究选定的特征参数包括氧化还原电位(Eh)、溶解氧(DO)、水温(T)、地下水位(H)及埋深、酸碱度(pH)以及溶解有机碳(DOC)等。利用XGBoost方法建立机器学习模型,用于预测硝态氮的相对浓度,并通过贝叶斯优化(BO)、麻雀搜索算法(SSA)、粒子群算法(PSO)分别对XGBoost预测模型进行超参数优化,得到最佳XGBoost预测模型(BO-XGBoost)。在此基础上,采用SHAP(SHapley Additive exPlanations)方法对BO-XGBoost模型进行可解释性分析。研究结果表明,BO-XGBoost模型的性能最好,在训练集与测试集的决定系数均超过0.90;可解释性分析结果和相关分析都揭示了Eh、DO、T、H、pH和DOC等影响因子对湿地潜流带地下水中硝态氮含量的影响是逐渐降低的规律。
ISSN:2095-1329
DOI:10.3969/j.issn.2095-1329.2024.02.009