Increasing home-grown forage consumption and profit in non-irrigated dairy systems. 4. Economic performance

The profitability of dairy farm systems in southern Australia is closely related to the amount of pasture grown and consumed on-farm by dairy cows. However, there are doubts regarding the extent to which gains in feed supply from perennial ryegrass pasture can continue to support productivity growth...

Full description

Saved in:
Bibliographic Details
Published inAnimal production science Vol. 54; no. 3; pp. 256 - 262
Main Authors Chapman, D. F, Beca, D, Hill, J, Tharmaraj, J, Jacobs, J. L, Cullen, B. R
Format Journal Article
LanguageEnglish
Published CSIRO Publishing 2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The profitability of dairy farm systems in southern Australia is closely related to the amount of pasture grown and consumed on-farm by dairy cows. However, there are doubts regarding the extent to which gains in feed supply from perennial ryegrass pasture can continue to support productivity growth in the industry. A farmlet experiment was conducted in south-western Victoria for 4 years (June 2005–May 2009), comparing a production system based on the use of forage species that complement perennial ryegrass in their seasonal growth pattern (‘Complementary Forages’, or CF) with a well managed system solely based on perennial ryegrass pasture (‘Ryegrass Max’, or RM). The forage base in CF included perennial ryegrass with a double-cropping rotation of winter cereal grown for whole-crop silage, followed by a summer brassica for grazing on 15% of farmlet area, a summer-active pasture based on tall fescue (on average 20% of farmlet area), perennial ryegrass oversown with short-rotation ryegrasses (average 16% of farmlet area) and summer brassica crops used in the process of pasture renovation (average 5% of farmlet area). The stocking rate was 2.2 and 2.8 cows/ha on RM and CF, respectively. Both systems were profitable over the 4 years of the experiment, with the modified internal rate of return over 4 years being 14.4% and 14.7% for the RM and CF farmlets, respectively. The coefficient of variation (%) of annual operating profit over 4 years was higher for the CF farmlet (56% and 63% for RM and CF, respectively). A severe drought in one of the 4 years exposed the more highly stocked CF system to greater supplementary feed costs and business risk. By comparison, the RM system performed consistently well across different seasons and in the face of a range of milk prices. The very small gain in profit from CF, plus the associated higher risk, makes it difficult to endorse a substantial change away from the traditional RM feed supply to greater reliance on summer-grown forages on non-irrigated dairy farms in southern Australia, as implemented in this experiment.
Bibliography:http://dx.doi.org/10.1071/AN13186
ISSN:1836-0939
DOI:10.1071/AN13168