Electro-mechanical permeabilization of lipid vesicles. Role of membrane tension and compressibility

A simple micropipet technique was used to determine the critical electric field strength for membrane breakdown as a function of the applied membrane tension for three different reconstituted membranes: stearoyloleoylphosphatidylcholine (SOPC), red blood cell (RBC) lipid extract, and SOPC cholestero...

Full description

Saved in:
Bibliographic Details
Published inBiophysical journal Vol. 55; no. 5; pp. 1001 - 1009
Main Authors Needham, D., Hochmuth, R.M.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.05.1989
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A simple micropipet technique was used to determine the critical electric field strength for membrane breakdown as a function of the applied membrane tension for three different reconstituted membranes: stearoyloleoylphosphatidylcholine (SOPC), red blood cell (RBC) lipid extract, and SOPC cholesterol (CHOL), 1:1. For these membranes the elastic area expansivity modulus increases from approximately 200 to 600 dyn/cm, and the tension at lysis increases from 5.7 to 13.2 dyn/cm, i.e., the membranes become more cohesive with increasing cholesterol content. The critical membrane voltage, Vc, required for breakdown was also found to increase with increasing cholesterol from 1.1 to 1.8 V at zero membrane tension. We have modeled the behavior in terms of the bilayer expansivity. Membrane area can be increased by either tensile or electrocompressive stresses. Both can store elastic energy in the membrane and eventually cause breakdown at a critical area dilation or critical energy. The model predicts a relation between tension and voltage at breakdown and this relation is verified experimentally for the three reconstituted membrane systems studied here.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0006-3495
1542-0086
DOI:10.1016/S0006-3495(89)82898-X