Formula diet driven microbiota shifts tryptophan metabolism from serotonin to tryptamine in neonatal porcine colon

The gut microbiota of breast-fed and formula-fed infants differ significantly, as do the risks for allergies, gut dysfunction, and upper respiratory tract infections. The connections between breast milk, various formulas, and the profiles of gut bacteria to these childhood illnesses, as well as the...

Full description

Saved in:
Bibliographic Details
Published inMicrobiome Vol. 5; no. 1; p. 77
Main Authors Saraf, Manish Kumar, Piccolo, Brian D, Bowlin, Anne K, Mercer, Kelly E, LeRoith, Tanya, Chintapalli, Sree V, Shankar, Kartik, Badger, Thomas M, Yeruva, Laxmi
Format Journal Article
LanguageEnglish
Published England BioMed Central 14.07.2017
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The gut microbiota of breast-fed and formula-fed infants differ significantly, as do the risks for allergies, gut dysfunction, and upper respiratory tract infections. The connections between breast milk, various formulas, and the profiles of gut bacteria to these childhood illnesses, as well as the mechanisms underlying the effects, are not well understood. We investigated distal colon microbiota by 16S RNA amplicon sequencing, morphology by histomorphometry, immune response by cytokine expression, and tryptophan metabolism in a pig model in which piglets were sow-fed, or fed soy or dairy milk-based formula from postnatal day (PND) 2 to 21. Formula feeding significantly (p < 0.05) altered the colon microbiota relative to the sow feeding. A significant reduction in microbial diversity was noted with formula groups in comparison to sow-fed. Streptococcus, Blautia, Citrobacter, Butrycimonas, Parabacteroides, Lactococcus genera were increased with formula feeding relative to sow feeding. In addition, relative to sow feeding, Anaerotruncus, Akkermansia, Enterococcus, Acinetobacter, Christensenella, and Holdemania were increased in milk-fed piglets, and Biliophila, Ruminococcus, Clostridium were increased in soy-fed piglets. No significant gut morphological changes were noted. However, higher cytokine mRNA expression (BMP4, CCL11, CCL21) was observed in the distal colon of formula groups. Formula feeding reduced enterochromaffin cell number and serotonin, but increased tryptamine levels relative to sow feeding. Our data confirm that formula diet alters the colon microbiota and appears to shift tryptophan metabolism from serotonin to tryptamine, which may lead to greater histamine levels and risk of allergies in infants.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2049-2618
2049-2618
DOI:10.1186/s40168-017-0297-z