Detection and biochemical characterization of insecticide resistance in field populations of Asian citrus psyllid in Guangdong of China

The Asian citrus psyllid, Diaphorina citri Kuwayama, is one of the most damaging pests of citrus-producing regions throughout the world. The use of insecticides is the main strategy for controlling psyllid and has increased year by year. In this study, four field populations of D. citri were evaluat...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 8; no. 1; pp. 12587 - 11
Main Authors Tian, Fajun, Mo, Xiufang, Rizvi, Syed Arif Hussain, Li, Chaofeng, Zeng, Xinnian
Format Journal Article
LanguageEnglish
Published England Nature Publishing Group 22.08.2018
Nature Publishing Group UK
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The Asian citrus psyllid, Diaphorina citri Kuwayama, is one of the most damaging pests of citrus-producing regions throughout the world. The use of insecticides is the main strategy for controlling psyllid and has increased year by year. In this study, four field populations of D. citri were evaluated for resistance to nine different insecticides using the leaf-dip method. The results showed that the highest level of resistance for D. citri was found in imidacloprid with a resistance ratio of 15.12 in the Zengcheng population compared with the laboratory susceptible population. This was followed by chlorpyriphos (6.47), dinotefuran (6.16), thiamethoxam (6.04), lambda-cyhalothrin (4.78), and bifenthrin (4.16). Piperonyl butoxide (PBO) and triphenyl phosphate (TPP) showed significant synergism on imidacloprid effects in the Zengcheng population (3.84- and 2.46-fold, respectively). Nevertheless, diethyl maleate (DEM) had no synergism on imidacloprid. Biochemical enzyme assays suggested that general esterase, glutathione S-transferase and cytochrome P450 monooxygenase activities were higher in the field-collected populations than in the laboratory susceptible population. However, glutathione S-transferase may play a minor role in the resistance of adult D. citri to insecticides. At the molecular level, resistance of D. citri to imidacloprid is mainly related to the increased expression of CYP4C68 and CYP4G70 (>5-fold).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-018-30674-5