Saccharomyces cerevisiae cellular engineering for the production of FAME biodiesel

The unsustainable and widespread utilization of fossil fuels continues to drive the rapid depletion of global supplies. Biodiesel has emerged as one of the most promising alternatives to conventional diesel, leading to growing research interest in its production. Microbes can facilitate the de novo...

Full description

Saved in:
Bibliographic Details
Published inAMB Express Vol. 14; no. 1; p. 42
Main Authors Wang, Laiyou, Liu, Bingbing, Meng, Qingshan, Yang, Chunchun, Hu, Yiyi, Wang, Chunyan, Wu, Pengyu, Ruan, Chen, Li, Wenhuan, Cheng, Shuang, Guo, Shuxian
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 24.04.2024
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The unsustainable and widespread utilization of fossil fuels continues to drive the rapid depletion of global supplies. Biodiesel has emerged as one of the most promising alternatives to conventional diesel, leading to growing research interest in its production. Microbes can facilitate the de novo synthesis of a type of biodiesel in the form of fatty acid methyl esters (FAMEs). In this study, Saccharomyces cerevisiae metabolic activity was engineered to facilitate enhanced FAME production. Initially, free fatty acid concentrations were increased by deleting two acetyl-CoA synthetase genes ( FAA1, FAA4 ) and an acyl-CoA oxidase gene ( POX1 ). Intracellular S-adenosylmethionine (SAM) levels were then enhanced via the deletion of an adenosine kinase gene ( ADO1 ) and the overexpression of a SAM synthetase gene ( SAM2 ). Lastly, the S. cerevisiae strain overproducing free fatty acids and SAM were manipulated to express a plasmid encoding the Drosophila melanogaster Juvenile Hormone Acid O -Methyltransferase ( Dm JHAMT). Using this combination of engineering approaches, a FAME concentration of 5.79 ± 0.56 mg/L was achieved using these cells in the context of shaking flask fermentation. To the best of our knowledge, this is the first detailed study of FAME production in S. cerevisiae . These results will provide a valuable basis for future efforts to engineer S. cerevisiae strains for highly efficient production of biodiesel. Key points De novo synthesis of FAMEs was demonstrated in Saccharomyces cerevisiae. FAME production was improved by increasing concentrations of fatty acids and SAM. FAMEs produced in S. cerevisiae mainly included C16 and C18 fatty acid methyl esters.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2191-0855
2191-0855
DOI:10.1186/s13568-024-01702-7