The Effectiveness of Natural Diarylheptanoids against Trypanosoma cruzi: Cytotoxicity, Ultrastructural Alterations and Molecular Modeling Studies

Curcumin (CUR) is the major constituent of the rhizomes of Curcuma longa and has been widely investigated for its chemotherapeutic properties. The well-known activity of CUR against Leishmania sp., Trypanosoma brucei and Plasmodium falciparum led us to investigate its activity against Trypanosoma cr...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 11; no. 9; p. e0162926
Main Authors Sueth-Santiago, Vitor, Moraes, Julliane de B B, Sobral Alves, Eliomara Sousa, Vannier-Santos, Marcos André, Freire-de-Lima, Célio G, Castro, Rosane N, Mendes-Silva, Gustavo Peron, Del Cistia, Catarina de Nigris, Magalhães, Luma Godoy, Andricopulo, Adriano Defini, Sant Anna, Carlos Mauricio R, Decoté-Ricardo, Debora, Freire de Lima, Marco Edilson
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.09.2016
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Curcumin (CUR) is the major constituent of the rhizomes of Curcuma longa and has been widely investigated for its chemotherapeutic properties. The well-known activity of CUR against Leishmania sp., Trypanosoma brucei and Plasmodium falciparum led us to investigate its activity against Trypanosoma cruzi. In this work, we tested the cytotoxic effects of CUR and other natural curcuminoids on different forms of T. cruzi, as well as the ultrastructural changes induced in epimastigote form of the parasite. CUR was verified as the curcuminoid with more significant trypanocidal properties (IC50 10.13 μM on epimastigotes). Demethoxycurcumin (DMC) was equipotent to CUR (IC50 11.07 μM), but bisdemethoxycurcumin (BDMC) was less active (IC50 45.33 μM) and cyclocurcumin (CC) was inactive. In the experiment with infected murine peritoneal macrophages all diarylheptanoids were more active than the control in the inhibition of the trypomastigotes release. The electron microscopy images showed ultrastructural changes associated with the cytoskeleton of the parasite, indicating tubulin as possible target of CUR in T. cruzi. The results obtained by flow cytometry analysis of DNA content of the parasites treated with natural curcuminoids suggested a mechanism of action on microtubules related to the paclitaxel`s mode of action. To better understand the mechanism of action highlighted by electron microscopy and flow cytometry experiments we performed the molecular docking of natural curcuminoids on tubulin of T. cruzi in a homology model and the results obtained showed that the observed interactions are in accordance with the IC50 values found, since there CUR and DMC perform similar interactions at the binding site on tubulin while BDMC do not realize a hydrogen bond with Lys163 residue due to the absence of methoxyl groups. These results indicate that trypanocidal properties of CUR may be related to the cytoskeletal alterations.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
Conceived and designed the experiments: MEFL MAVS DDR CFDL ADA CMRS.Performed the experiments: VSS JBBM ESSA CNDC LGM GPMS.Analyzed the data: MEFL MAVS DDR CFDL ADA CMRS VSS JBBM ESSA CNDC LGM.Contributed reagents/materials/analysis tools: MEFL MAVS DDR CFDL ADA CMRS MEFL MAVS DDR CFDL ADA CMRS RNC.Wrote the paper: MEFL MAVS DDR CFDL ADA CMRS VSS.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0162926